Thygesenbrowne1946

Z Iurium Wiki

Verze z 8. 10. 2024, 02:17, kterou vytvořil Thygesenbrowne1946 (diskuse | příspěvky) (Založena nová stránka s textem „Clonogenic assay evaluates the potential of cells to undergo division or generate clones following treatment with a chemical or other agent, thereby allowi…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Clonogenic assay evaluates the potential of cells to undergo division or generate clones following treatment with a chemical or other agent, thereby allowing the evaluation of cytotoxic and/or antiproliferative effects. Clonogenic assay analysis using traditional methods tends to be time-consuming and yield inconsistent results, whereas results from analyses conducted using automated image processing methods may be misleading or subject to misinterpretation. Thus, the aim of this work was to validate and demonstrate the applicability of a recently developed software.

Repeatability of measurements was evaluated by comparing results from 10 replicate images from a single well. To evaluate the viability of the software, results were compared with those obtained from manual counting, crystal violet optical density, and up-to-date automated methods. A clonogenic index was experimentally developed using the individual area occupied by colonies, while clone stratification was used to differentiate between antiproliferative and cytotoxic effects.

The developed software showed to be a reliable and consistent tool for clonogenic assay evaluation, presenting a repeatability mean error of 0.79% for the number of colonies and 0.89% for the total area of colonies, as well as exhibiting a significant correlation (p<0.05) with results obtained from widely adopted gold standard methods. The software was also able to detect an appropriate dose-dependent effect as well as a predominant cytotoxic effect of vincristine on MCF-7 cells and calculate the clonogenic index.

Therefore, this software is adequate for the analysis of clonogenic assay images, differentiating between cytotoxic and antiproliferative trends.

Therefore, this software is adequate for the analysis of clonogenic assay images, differentiating between cytotoxic and antiproliferative trends.Amitriptyline (AMT) and cyclobenzaprine (CBZ) are tricyclic drugs used as antidepressant and muscle relaxant, respectively. Selleck Gefitinib They show inherently chirality, i.e. they are chiral due to the lack of any symmetry element. As they are used as racemic mixture, diastereomeric inclusion complexes are formed via encapsulation in homochiral βCD. In this work we show that a suitable combination of NMR methods easily provides details on the chiral recognition, geometry of complexation, rotational dynamics and spatial proximity of selected atom pairs. In particular, we show that 13C NMR can be used to unambiguously assess chiral recognition, demonstrating a higher performance over 1H NMR. The mole fraction of the bound drug and the association constant can be worked out through diffusion experiments, whereas the combination of non-selective, selective and bi-selective relaxation spectra gave insights into the rotational motion of the complexed drug and the spatial proximity of selected proton pairs. The toolkit here proposed provides a thorough characterization of CD/drug inclusion complexes from a physicochemical point of view. This can constructively complement the conventional pharmacological and pharmacokinetic experiments, and can shed light on the understanding of CD/drug formulations.Dry granulation through roll compaction is a technology commonly used in the pharmaceutical industry for producing roll compacted ribbons. The significance of the feed screw speed and roll speed during ribbon production was highlighted in recent publications. However, previous studies focused primarily on the individual effects of either the feed screw speed or roll speed on ribbon porosity, and the synergetic effect of these parameters was rarely examined. The aim of this study therefore was to investigate the effects of the screw-to-roll speed ratio on the porosity of roll compacted ribbons, produced at different roll compaction conditions using the microcrystalline cellulose MCC, Avicel PH-102 feed material. It was observed that ribbon porosity decreased linearly with increasing screw-to-roll speed ratio. Furthermore, an increase in the speed ratio led to an increase in the roll gap and mass throughput while a decrease in the screw constant was observed. Thus, this study demonstrates that the screw-to-roll speed ratio can be treated as one of the critical process parameters for controlling ribbon porosity and can also be used to determine the optimum operating regimes during roll compaction.Pulmonary drug delivery has attracted considerable attention in recent years. However, it is still a major challenge to deliver poorly water-soluble drugs to lungs with good solubility and fine aerodynamic performance. In this study, curcumin was loaded into cyclodextrin-based metal-organic frameworks (CD-MOFs) for pulmonary delivery. Compared with micronized curcumin prepared by jet milling, curcumin-loaded CD-MOFs (Cur-CD-MOFs) exhibited excellent aerodynamic performance, which was attributed to the unique porous structure and lower density of CD-MOFs. The dissolution test showed that the drug release rate of Cur-CD-MOFs was much faster than that of micronized curcumin. The all-atom molecular dynamic simulation showed that curcumin molecules were loaded into the hydrophobic cavities of CD-MOFs or entered into the large hydrophilic cavities to form nanoclusters. The elevated wettability of Cur-CD-MOFs and the unique spatial distribution feature of curcumin in porous interior of CD-MOFs might be favorable for the improved dissolution rate. The DPPH radical scavenging test showed that Cur-CD-MOFs had prominent antioxidant activities. Therefore, CD-MOFs were expected to be promising carriers for pulmonary delivery of poorly water-soluble drugs.Electro-responsive controlled drug delivery has been receiving an increasing interest as one of the on-demand drug delivery systems, aiming the improvement of the therapeutics efficacy by controlling the amount of drug release at a specific time and target site. Herein, we report a simple method to develop an electro-responsive controlled drug delivery system using functionalized melanin nanoparticles (FMNPs) with polydopamine and polypyrrole to precisely control the release of dexamethasone (Dex). Optimized FMNPs showed 376.77 ± 62.05 nm of particle size, a polydispersity index of 0.26 ± 0.09 and a zeta-potential (ZP) of -32.59 ± 3.61 mV. FMNPs evidenced a spherical shape, which was confirmed by scanning electron microscopy. Fourier-transform infrared spectrometry analysis confirmed the deposition of the polymers on the FMNPs' surface. The incorporation efficiency of the optimized Dex-loaded FMNPs was 94.45 ± 0.63% and the increase of ZP to -40.34 ± 4.65 mV was attributed to the anionic nature of Dex. In vitro Dex release studies without stimuli revealed a maximum Dex release below 10%.

Autoři článku: Thygesenbrowne1946 (Boykin Romero)