Grossmanburton6641

Z Iurium Wiki

Verze z 7. 10. 2024, 21:14, kterou vytvořil Grossmanburton6641 (diskuse | příspěvky) (Založena nová stránka s textem „In addition, the easy magnetic separation of GO@Fe3O4 simplifies the operation process, helping the sensor detect bacteria in 30 minutes with a linear rang…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In addition, the easy magnetic separation of GO@Fe3O4 simplifies the operation process, helping the sensor detect bacteria in 30 minutes with a linear range from 103 to 107 CFU mL-1 and a limit of detection of 467 CFU mL-1. Moreover, recovery test results also showed that the sensor has clinical application potential for the rapid detection of pathogenic microorganisms in complex biological samples.We demonstrate the light-induced, crosslinker mediated collapse of linear polymer chains into single-chain nanoparticles (SCNPs) capable of self-reporting their unfolding. The crosslinker entails a phenyloxalate motif allowing for the targeted degradation of the SCNPs via addition of hydrogen peroxide that triggers chemiluminescence (CL). The time-dependant CL emission can serve as a guide to follow the time dependent unfolding of the SCNPs, allowing for a qualitative assessment of the underlying mechanism.Waxes, both natural and synthetic, are present throughout heritage collections - from archaeological and ethnographic, archival and historical, to traditional and contemporary art. Very often wax-containing objects show degradation issues analytical chemistry, by allowing us to understand the original composition and the degradation mechanisms of these materials, provides the key to designing appropriate conservation strategies and materials for wax-containing objects in our heritage collections.Hyperspectral data in the near infrared range were examined for nine common types of plastic particles of 1 mm and 100-500 μm sizes on dry and wet glass fiber filters. Weaker peak intensities were detected for small particles compared to large particles, and the reflectances were weaker at longer wavelengths when the particles were measured on a wet filter. These phenomena are explainable due to the effect of the correlation between the particle size and the absorption of infrared light by water. We constructed robust classification models that are capable of classifying polymer types, regardless of particle size or filter conditions (wet vs. dry), based on hyperspectral data for small particles measured on wet filters. Using the models, we also successfully classified the polymer type of polystyrene beads covered with microalgae, which simulates the natural conditions of microplastics in the ocean. This study suggests that hyperspectral imaging techniques with appropriate classification models allow the identification of microplastics without the time- and labor-consuming procedures of drying samples and removing biofilms, thus enabling more rapid analyses.The influence of viscoelasticity on the dewetting of ultrathin polymer films is unraveled by means of theory and numerical simulations in the inertialess limit. Three viscoelastic models are employed to analyse the dynamics of the film, namely the Oldroyd-B, Giesekus, and FENE-P models. We revisit the linear stability analysis first derived by [Tomar et al., Eur. Phys. J. E., 2006, 20, 185-200] for a Jeffrey's film to conclude that all three models formally share the same dispersion relation. For times close to the rupture singularity, the self-similar regime recently discovered [Moreno-Boza et al., Phys. Rev. Fluids, 2020, 5, 014002], where the dimensionless minimum film thickness scales with the dimensionless time until rupture as hmin = 0.665τ1/3, is asymptotically established independently of the rheological model. The spatial structure of the flow is characterised by a Newtonian core and a thin viscoelastic boundary layer at the free surface, where polymeric stresses become singular as τ → 0. The Deborah number and the solvent-to-total viscosity ratio affect the rupture time but not the length scale of the resulting dewetting pattern and asymptotic flow structure close to rupture, which is thus shown to be universal. Our three-dimensional simulations lead us to conclude that bulk viscoelasticity alone does not explain the experimental observations of dewetting of polymeric films near the glass transition.Photocatalytic catalysts with a large specific surface area generally can not only supply more active sites but also facilitate the surface charge separation process. Here, we present a facile method to synthesize highly porous polymeric carbon nitride by an acid etching process. Benefitting from the porous structure and enlarged specific surface area, CN-0.25H reveals an enhanced photocatalytic hydrogen evolution rate. Experimental and computational results suggest that the improved surface charge separation process mainly accounts for the enhanced photocatalytic activity, illustrating the importance of the surface area for a CN photocatalyst.Anti-tumor treatment based on free radicals is often inefficient in hypoxic tumors, mainly because of the oxygen-dependent generation mechanism of reactive oxygen species (ROS). Herein, we report an NIR laser-controlled nano-system that is capable of generating alkyl radicals in situ in an oxygen-independent approach. Hollow mesoporous Prussian blue nanoparticles (HPB NPs) were developed to co-encapsulate the azo initiator (AIBI) and 1-tetradecanol as the phase change material (PCM, melting point of ∼39 °C), obtaining the AP@HPB NPs. At normal body temperature, the PCM remained in the solid state to prevent the pre-leakage of AIBI. Upon NIR laser irradiation (808 nm) at the tumor site, AP@HPB NPs generated heat upon photothermal conversion, which melted the PCM to release AIBI and decomposed AIBI to produce toxicity free alkyl radicals under both normoxic and hypoxic conditions. The alkyl free radicals efficiently killed tumor cells by causing oxidative stress and damaging DNA. Meanwhile, NIR light-induced hyperthermia cooperated with free radicals to efficiently eradicate tumors. This study therefore provides a promising strategy toward oxygen-independent free radical therapy, especially for the treatment of hypoxic tumors.A [Mn18] wheel of wheels is obtained from the reaction of MnBr2·4H2O and LH3 in MeOH. The metallic skeleton reveals two asymmetric [MnIII6MnII2] square wheels connected into a larger wheel via two MnII ions. click here Magnetic susceptibility and magnetisation data reveal competing exchange interactions, supported by computational studies.

Autoři článku: Grossmanburton6641 (Golden Dodd)