Ortegakeller1512

Z Iurium Wiki

Verze z 7. 10. 2024, 21:12, kterou vytvořil Ortegakeller1512 (diskuse | příspěvky) (Založena nová stránka s textem „Under the optimal conditions, a dynamic response range from 50 pg/mL to 1.0 μg/mL and a detection limit of 6.3 pg/mL for CEA were obtained. Moreover, the…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Under the optimal conditions, a dynamic response range from 50 pg/mL to 1.0 μg/mL and a detection limit of 6.3 pg/mL for CEA were obtained. Moreover, the proposed strategy represented satisfactory sensitivity and stability, and showed a good precision in real samples application.Carbon monoxide (CO) is now well recognized a pivotal endogenous signaling molecule in mammalian lives. The proof-of-concept employing chemical carriers of exogenous CO as prodrugs for CO release, also known as CO-releasing molecules (CO-RMs), has been appreciated. The major advantage of CO-RMs is that they are able to deliver CO to the target sites in a controlled manner. There is an increasing body of experimental studies suggesting the therapeutic potentials of CO and CO-RMs in different cancer models. This review firstly presents a short but crucial view concerning the characteristics of CO and CO-RMs. Then, the anticancer activities of CO-RMs that target many cancer hallmarks, mainly proliferation, apoptosis, angiogenesis, and invasion and metastasis, are discussed. However, their anticancer activities are varying and cell-type specific. The aerobic metabolism of molecular oxygen inevitably generates various oxygen-containing reactive metabolites termed reactive oxygen species (ROS) which play important roles in both physiology and pathophysiology. Although ROS act as a double-edged sword in cancer, both sides of which may potentially have been exploited for therapeutic benefits. The main focus of the present review is thus to identify the possible signaling network by which CO-RMs can exert their anticancer actions, where ROS play the central role. Another important issue concerning the potential effect of CO-RMs on the aerobic glycolysis (the Warburg effect) which is a feature of cancer metabolic reprogramming is given before the conclusion with future prospects on the challenges of developing CO-RMs into clinically pharmaceutical candidates in cancer therapy.Novel coronavirus disease 2019 (COVID-19) is an infectious disease that spreads very rapidly and threatens the health of billions of people worldwide. With the number of cases increasing rapidly, most countries are facing the problem of a shortage of testing kits and resources, and it is necessary to use other diagnostic methods as an alternative to these test kits. Sotrastaurin clinical trial In this paper, we propose a convolutional neural network (CNN) model (ULNet) to detect COVID-19 using chest X-ray images. The proposed architecture is constructed by adding a new downsampling side, skip connections and fully connected layers on the basis of U-net. Because the shape of the network is similar to UL, it is named ULNet. This model is trained and tested on a publicly available Kaggle dataset (consisting of a combination of 219 COVID-19, 1314 normal and 1345 viral pneumonia chest X-ray images), including binary classification (COVID-19 vs. Normal) and multiclass classification (COVID-19 vs. Normal vs. Viral Pneumonia). The accuracy of the proposed model in the detection of COVID-19 in the binary-class and multiclass tasks is 99.53% and 95.35%, respectively. Based on these promising results, this method is expected to help doctors diagnose and detect COVID-19. Overall, our ULNet provides a quick method for identifying patients with COVID-19, which is conducive to the control of the COVID-19 pandemic.In recent years, vast developments in Computer-Aided Diagnosis (CAD) for skin diseases have generated much interest from clinicians and other eventual end-users of this technology. Introducing clinical domain knowledge to these machine learning strategies can help dispel the black box nature of these tools, strengthening clinician trust. Clinical domain knowledge also provides new information channels which can improve CAD diagnostic performance. In this paper, we propose a novel framework for malignant melanoma (MM) detection by fusing clinical images and dermoscopic images. The proposed method combines a multi-labeled deep feature extractor and clinically constrained classifier chain (CC). This allows the 7-point checklist, a clinician diagnostic algorithm, to be included in the decision level while maintaining the clinical importance of the major and minor criteria in the checklist. Our proposed framework achieved an average accuracy of 81.3% for detecting all criteria and melanoma when testing on a publicly available 7-point checklist dataset. This is the highest reported results, outperforming state-of-the-art methods in the literature by 6.4% or more. Analyses also show that the proposed system surpasses the single modality system of using either clinical images or dermoscopic images alone and the systems without adopting the approach of multi-label and clinically constrained classifier chain. Our carefully designed system demonstrates a substantial improvement over melanoma detection. By keeping the familiar major and minor criteria of the 7-point checklist and their corresponding weights, the proposed system may be more accepted by physicians as a human-interpretable CAD tool for automated melanoma detection.The automatic segmentation of medical images has made continuous progress due to the development of convolutional neural networks (CNNs) and attention mechanism. However, previous works usually explore the attention features of a certain dimension in the image, thus may ignore the correlation between feature maps in other dimensions. Therefore, how to capture the global features of various dimensions is still facing challenges. To deal with this problem, we propose a triple attention network (TA-Net) by exploring the ability of the attention mechanism to simultaneously recognize global contextual information in the channel domain, spatial domain, and feature internal domain. Specifically, during the encoder step, we propose a channel with self-attention encoder (CSE) block to learn the long-range dependencies of pixels. The CSE effectively increases the receptive field and enhances the representation of target features. In the decoder step, we propose a spatial attention up-sampling (SU) block that makes the network pay more attention to the position of the useful pixels when fusing the low-level and high-level features. Extensive experiments were tested on four public datasets and one local dataset. The datasets include the following types retinal blood vessels (DRIVE and STARE), cells (ISBI 2012), cutaneous melanoma (ISIC 2017), and intracranial blood vessels. Experimental results demonstrate that the proposed TA-Net is overall superior to previous state-of-the-art methods in different medical image segmentation tasks with high accuracy, promising robustness, and relatively low redundancy.

Colonoscopy remains the gold-standard screening for colorectal cancer. However, significant miss rates for polyps have been reported, particularly when there are multiple small adenomas. This presents an opportunity to leverage computer-aided systems to support clinicians and reduce the number of polyps missed.

In this work we introduce the Focus U-Net, a novel dual attention-gated deep neural network, which combines efficient spatial and channel-based attention into a single Focus Gate module to encourage selective learning of polyp features. The Focus U-Net incorporates several further architectural modifications, including the addition of short-range skip connections and deep supervision. Furthermore, we introduce the Hybrid Focal loss, a new compound loss function based on the Focal loss and Focal Tversky loss, designed to handle class-imbalanced image segmentation. For our experiments, we selected five public datasets containing images of polyps obtained during optical colonoscopy CVC-ClinicDB, Kvasio other biomedical image segmentation tasks similarly involving class imbalance and requiring efficiency.

This study shows the potential for deep learning to provide fast and accurate polyp segmentation results for use during colonoscopy. The Focus U-Net may be adapted for future use in newer non-invasive colorectal cancer screening and more broadly to other biomedical image segmentation tasks similarly involving class imbalance and requiring efficiency.Breast mass segmentation in mammograms is still a challenging and clinically valuable task. In this paper, we propose an effective and lightweight segmentation model based on convolutional neural networks to automatically segment breast masses in whole mammograms. Specifically, we first developed feature strengthening modules to enhance relevant information about masses and other tissues and improve the representation power of low-resolution feature layers with high-resolution feature maps. Second, we applied a parallel dilated convolution module to capture the features of different scales of masses and fully extract information about the edges and internal texture of the masses. Third, a mutual information loss function was employed to optimise the accuracy of the prediction results by maximising the mutual information between the prediction results and the ground truth. Finally, the proposed model was evaluated on both available INbreast and CBIS-DDSM datasets, and the experimental results indicated that our method achieved excellent segmentation performance in terms of dice coefficient, intersection over union, and sensitivity metrics.

Alzheimer's disease (AD) is one of the most commonly seen brain ailments worldwide. Therefore, many researches have been presented about AD detection and cure. In addition, machine learning models have also been proposed to detect AD promptly.

In this work, a new brain image dataset was collected. This dataset contains two categories, and these categories are healthy and AD. This dataset was collected from 1070 subjects. This work presents an automatic AD detection model to detect AD using brain images automatically. The presented model is called a feed-forward local phase quantization network (LPQNet). LPQNet consists of (i) multilevel feature generation based on LPQ and average pooling, (ii) feature selection using neighborhood component analysis (NCA), and (iii) classification phases. The prime objective of the presented LPQNet is to reach high accuracy with low computational complexity. LPQNet generates features on six levels. Therefore, 256×6=1536 features are generated from an image, and the most imn be developed.

Moreover, the calculated results from LPQNet are compared to other automatic AD detection models. Comparisons, results, and findings clearly denote the superiority of the presented model. In addition, a new intelligent AD detector application can be developed for use in magnetic resonance (MR) and computed tomography (CT) devices. By using the developed automated AD detector, new generation intelligence MR and CT devices can be developed.Fundamental principle in improving Dental and Orthodontic treatments is the ability to quantitatively assess and cross-compare their outcomes. Such assessments require calculating distances and angles from 3D coordinates of dental landmarks. The costly and repetitive task of hand-labelling dental models hinder studies requiring large sample size to penetrate statistical noise. We have developed techniques and a software implementing these techniques to map out automatically, 3D dental scans. This process is divided into consecutive steps - determining a model's orientation, separating and identifying the individual tooth and finding landmarks on each tooth - described in this paper. The examples to demonstrate the techniques, software and discussions on remaining issues are provided as well. The software is originally designed to automate Modified Huddard Bodemham (MHB) landmarking for assessing cleft lip/palate patients. Currently only MHB landmarks are supported, however it is extendable to any predetermined landmarks.

Autoři článku: Ortegakeller1512 (Contreras Handberg)