Vosssteele6625

Z Iurium Wiki

Verze z 7. 10. 2024, 21:11, kterou vytvořil Vosssteele6625 (diskuse | příspěvky) (Založena nová stránka s textem „e prophylactic anticoagulation should be considered in the setting of thyroid storms.<br /><br />Prolonged use of rectal propylthiouracil (PTU) for managin…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

e prophylactic anticoagulation should be considered in the setting of thyroid storms.

Prolonged use of rectal propylthiouracil (PTU) for managing hyperthyroidism was effective in a patient who cannot take oral anti-thyroid drugs. Hyperthyroidism is a hypercoagulable state due to an imbalance between coagulation and fibrinolytic factors. Thyroid storm can be associated with extensive thromboembolism even in the absence of atrial fibrillation; routine prophylactic anticoagulation should be considered in the setting of thyroid storms.Sepsis is a life-threatening condition that arises from a poorly regulated inflammatory response to pathogenic organisms. Current treatments are limited to antibiotics, fluid resuscitation, and other supportive therapies. New targets for monitoring disease progression and therapeutic interventions are therefore critically needed. We previously reported that lipocalin-2 (Lcn2), a bacteriostatic mediator with potent proapoptotic activities, was robustly induced in sepsis. Other studies showed that Lcn2 was a predictor of mortality in septic patients. However, how Lcn2 is regulated during sepsis is poorly understood. We evaluated how IkBζ, an inducer of Lcn2, was regulated in sepsis using both the cecal ligation and puncture (CLP) and endotoxemia (lipopolysaccharide [LPS]) animal models. We show that Nfkbiz, the gene encoding IkBζ, was rapidly stimulated but, unlike Lcn2, whose expression persists during sepsis, mRNA levels of Nfkbiz decline to near basal levels several hours after its induction. In contrast, we observed that IkBζ expression remained highly elevated in septic animals following CLP but not LPS, indicating the occurrence of a CLP-specific mechanism that extends IkBζ half-life. By using an inhibitor of IkBζ, we determined that the expression of Lcn2 was largely controlled by IkBζ. Altogether, these data indicate that the high IkBζ expression in tissues likely contributes to the elevated expression of Lcn2 in sepsis. Since IkBζ is also capable of promoting or repressing other inflammatory genes, it might exert a central role in sepsis.The mucin Muc2 is a major constituent of the mucus layer that covers the intestinal epithelium and creates a barrier between epithelial cells and luminal commensal or pathogenic microorganisms. The Gram-positive foodborne pathogen Listeria monocytogenes can cause enteritis and also disseminate from the intestine to give rise to systemic disease. L. monocytogenes can bind to intestinal Muc2, but the influence of the Muc2 mucin barrier on L. monocytogenes intestinal colonization and systemic dissemination has not been explored. Here, we used an orogastric L. monocytogenes infection model to investigate the role of Muc2 in host defense against L. monocytogenes Compared to wild-type mice, we found that Muc2-/- mice exhibited heightened susceptibility to orogastric challenge with L. monocytogenes, with higher mortality, elevated colonic pathology, and increased pathogen burdens in both the intestinal tract and distal organs. In contrast, L. monocytogenes burdens were equivalent in wild-type and Muc2-/- animals when the pathogen was administered intraperitoneally, suggesting that systemic immune defects related to Muc2 deficiency do not explain the heightened pathogen dissemination observed in oral infections. Using a barcoded L. monocytogenes library to measure intrahost pathogen population dynamics, we found that Muc2-/- animals had larger pathogen founding population sizes in the intestine and distal sites than observed in wild-type animals. Comparisons of barcode frequencies suggested that the colon becomes the major source for seeding the internal organs in Muc2-/- animals. Together, our findings reveal that Muc2 mucin plays a key role in controlling L. monocytogenes colonization, dissemination, and population dynamics.Rickettsiae belong to the Anaplasmataceae family, which includes mostly tick-transmitted pathogens causing human, canine, and ruminant diseases. Biochemical characterization of the pathogens remains a major challenge because of their obligate parasitism. We investigated the use of an axenic medium for growth of two important pathogens-Anaplasma phagocytophilum and Ehrlichia chaffeensis-in host cell-free phagosomes. We recently reported that the axenic medium promotes protein and DNA biosynthesis in host cell-free replicating form of E. chaffeensis, although the bacterial replication is limited. We now tested the hypothesis that growth on axenic medium can be improved if host cell-free rickettsia-containing phagosomes are used. Purification of phagosomes from A. phagocytophilum- and E. chaffeensis-infected host cells was accomplished by density gradient centrifugation combined with magnet-assisted cell sorting. Protein and DNA synthesis was observed for both organisms in cell-free phagosomes with glucose-6-phosphate and/or ATP. The levels of protein and DNA synthesis were the highest for a medium pH of 7. The data demonstrate bacterial DNA and protein synthesis for the first time in host cell-free phagosomes for two rickettsial pathogens. check details The host cell support-free axenic growth of obligate pathogenic rickettsiae will be critical in advancing research goals in many important tick-borne diseases impacting human and animal health.The vast majority of research pertaining to urinary tract infection has focused on a single pathogen in isolation, and predominantly Escherichia coli. However, polymicrobial urine colonization and infection are prevalent in several patient populations, including individuals with urinary catheters. The progression from asymptomatic colonization to symptomatic infection and severe disease is likely shaped by interactions between traditional pathogens as well as constituents of the normal urinary microbiota. Recent studies have begun to experimentally dissect the contribution of polymicrobial interactions to disease outcomes in the urinary tract, including their role in development of antimicrobial-resistant biofilm communities, modulating the innate immune response, tissue damage, and sepsis. This review aims to summarize the epidemiology of polymicrobial urine colonization, provide an overview of common urinary tract pathogens, and present key microbe-microbe and host-microbe interactions that influence infection progression, persistence, and severity.

Autoři článku: Vosssteele6625 (Hvass Abdi)