Holbrookmoreno2819

Z Iurium Wiki

Verze z 7. 10. 2024, 20:42, kterou vytvořil Holbrookmoreno2819 (diskuse | příspěvky) (Založena nová stránka s textem „ETHNOPHARMACOLOGICAL RELEVANCE Dipsacus asper Wall. ex C.B. Clarke, a traditional Chinese herbal medicine, has long been used in China for the therapy of b…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

ETHNOPHARMACOLOGICAL RELEVANCE Dipsacus asper Wall. ex C.B. Clarke, a traditional Chinese herbal medicine, has long been used in China for the therapy of bone diseases (e.g. bone fracture, osteoporosis, rheumatic arthritis), traumatic hematoma, uterine bleeding and those caused by the deficiency of liver and kidney. AIM OF THE STUDY This work aims to evaluate current research progress on chemical constituents, pharmacological activities, quality control, and pharmacokinetic of Dipsacus asper Wall. ex C.B. Clarke, pinpoint the shortcomings of existing studies, and provide meaningful guidelines for our future investigations. METHODS Extensive database retrieval, such as PubMed, SciFinder and CNKI, was carried out by using keywords such as "Dipsacus asper", "Radix Dipsaci", and "Xuduan". Furthermore, relevant textbooks, patents, reviews, and digital documents were consulted to collate all available scientific literature and to provide a complete science-based survey of the topic. RESULTS More than 100 compounds ioactivities, such as anti-inflammatory and free radical scavenging, which are shared in many other plant species. Pharmacological effects of individual component of DA is not equivalent to its traditional usage. Attention should be paid to the traditional effect of extract of DA. The oxygen-limiting condition promotes the accumulation of ployhydroxybutyrate (PHB) in C. necator H16, while the growth of which is restricted. Under autotrophic culture using carbon dioxide, hydrogen, and oxygen as substrates, the oxygen concentration below 6.9% (v/v) in the mixture is considered as a safe condition. It also expected to achieve cell rapid growth and large accumulation of PHB simultaneously under the oxygen-limiting condition in C. necator H16. In this study, a metabolically engineered strain capable of both rapid growth and large accumulation of PHB under oxygen-limiting conditions was constructed based on the transcriptomic analysis. In the comparative transcriptomic analysis, the genes related to energy-generating of C. necator H16 at autotrophic culture were downregulated under oxygen-limiting conditions (3%, v/v). Besides, the genes related to the key intermediates (pyruvate and acetyl-CoA) metabolism in PHB biosynthetic pathway were analyzed. Most of which were downregulated, except thtion of Reh01 (p2M-pj-v) increased by 31.0%, 30.9%, and 71.5%, respectively. From the perspectives of transcriptome and metabolic engineering, the work provides new ideas to achieve rapid cell growth and large PHB accumulation in C. necator under oxygen-limiting and autotrophic conditions. Tetrahydrobiopterin (BH4) is an endogenous cofactor for various enzymatic conversions of essential biomolecules including nitric oxide, tyrosine, dopamine, serotonin and phenylalanine. Depending on the physiological functions of these molecules, BH4 plays multiple roles in the cardiovascular, immune, nervous and endocrine systems. A deficiency of BH4 or an imbalance of the redox state of biopterin has been implicated in various cardiovascular and metabolic diseases. Therefore, supplementation with BH4 is considered as a therapeutic option for these diseases. In addition to the classical nitric oxide synthase (NOS)-dependent role of BH4, recent studies proposed novel NOS-independent roles of BH4 in health and disease conditions. This article reviews the updated role of BH4 in mitochondrial regulation, energy metabolism and cardiovascular and metabolic diseases. Cryptosporidiosis is an obligate intracellular pathogen causing diarrhea. Merozoite egress is essential for infection to spread between host cells. However, the mechanisms of egress have yet to be defined. We hypothesized that Cyclic GMP-Dependent Protein Kinase G (PKG) may be involved in Cryptosporidium egress. In this study, Cryptosporidium parvum PKG was silenced by using antisense RNA sequences. PKG-silencing significantly inhibited egress of merozoites from infected HCT-8 cells into the supernatant and led to retention of intracellular forms within the host cells. This data identifies PKG as a key mediator of merozoite egress, a key step in the parasite lifecycle. Mitochondrial disorders (MDs) are genetic ailments affecting all age groups. Epidemiological data and frequencies of gene mutations in pediatric patients in China are scarce. This retrospective study assessed 101 patients with suspected MDs treated at the Neurology Department of Children's Hospital, Fudan University, in 2011-2017. Mitochondrial (mtDNA) and nuclear (nDNA) samples were assessed by long-range polymerase chain reaction (PCR)-based whole mtDNA sequencing and whole exome sequencing (WES) for identifying pathogenic mutations. Muscle samples underwent various staining protocols and immunofluorescence for detecting selected proteins. https://www.selleckchem.com/products/bgj398-nvp-bgj398.html Seventeen mutations in the MT-TL1, MT-COX2, MT-ND4, MT, tRNA TRNE, MT-TN, MT-TK, MT-ATP6, MT-ND6, MT-ND3 and MT-CO3 genes were identified in 39 patients, of which m.3243A  >  G, m.3303C  >  T, m.8993T  >  C/G, m.9176T  >  C, and m.10191T  >  C were most common. Mitochondrial myopathy and MELAS were most common in m.3243A  >  G mutant individuals. Four novel mutations were detected, including m.9478insT, m.5666T  >  C, m.8265T  >  C, and m.8380-13600 deletion mutations related to Leigh syndrome, mitochondrial myopathy and KSS, respectively. Thirty-three mutations in the TK2, POLG, IBA57, HADHB, FBXL4, ALDH5A1, FOXRED1, TPK1, NDUFAF5, NDUFAF7, NDUFV1, CARS2, PDHA1, and HIBCH genes were identified in 19 patients, including 23 currently unknown. Higher rates of TK2, POLG, IBA57 and HADHB mutations were found in nDNA-mutated MD compared with the remaining individuals. Besides, IBA57 c.286T  >  C (p.Y96H), TK2 c.497A  >  T (p.D166V) founder mutations critically contributed to MDs. Comprehensive genomic analysis plays a critical role in pediatric MD diagnosis. These data summarize the relative frequencies of different gene mutations in a large Chinese population, and identified 23 novel MD-associated nDNA and 4 novel mtDNA mutations. Stem cell therapy is widely employed in treating osteoarthritis (OA), and bone marrow-derived mesenchymal stem cells (BMSCs) has gradually become the most attractive new method for treating OA due to the benefit for cartilage tissue repair. However, the apoptosis in the neural stem cell transplantation severely decreases repairing efficacy. Icariin has been reported to exert multiple effects on BMSCs, including its proliferation, osteogenic, and chondrogenic differentiation. However, its effects on the injury induced by oxygen, glucose and serum deprivation (OGD) remains unknown. We prospectively investigated the role of ICA on rabbit BMSCs under conditions of OGD. Firstly, BMSCs were cultured under conditions of OGD, ICA relieved OGD-induced cell damage by promoting cell proliferation and suppressing apoptosis. Secondly, Markers of endoplasmic reticulum stress (ERs), ER stress IRE-1 pathway, and autophagy were both inhibited by ICA via inhibition of phosphor-extracellular regulated protein kinases (p-ERKs), p-P38, p-c-Jun N-terminal kinase (p-JNK) or si-MAPK. Finally, decrease of ERs marker levels enhanced protective effect of ICA against OGD-induced injury by limiting apoptosis and autophagy. Moreover, an autophagy inhibitor (3-methyladenine 3-MA) contributed to a synergistic effect in conjunction with ICA, in promoting cell proliferation, suggesting that ICA exerts anti-ERs and anti-autophagy effects in OGD-treated BMSCs. Therefore, ICA protected rabbit BMSCs from OGD-induced apoptosis through inhibitory regulation of ERs-mediated autophagy related to the MAPK signaling pathway, which provided insights for a potential therapeutic strategy in OA. AIMS Vascular smooth muscle cell (VSMC) proliferation plays a significant role in the development of various vascular disorders. However, the effect of cortistatin (CST) on VSMC proliferation remains unclear. Therefore, the purpose of our research aimed to study whether CST protected VSMCs from angiotensin II (Ang II)-induced proliferation and which mechanisms participated in the process. MAIN METHODS Cultured rat VSMCs were treated with Ang II with or without CST for 24 h. Cell proliferation rate was measured by cell counting kit-8 (CCK8) assay. The expressions of CST and its receptors were assessed by quantitative real-time PCR (qRT-PCR). The protein expression levels were analyzed by western blots. Immunofluorescence and transmission electron microscopy (TEM) were used to observe autophagy. KEY FINDINGS Our results showed that different concentrations of CST alleviated the Ang II-induced VSMC proliferation. The autophagy and reactive oxygen species (ROS) stimulated by Ang II were attenuated by CST. Furthermore, when the autophagy inhibitor 3-methyladenine (3-MA) was added, it exerted similar inhibition effects like CST, but didn't augment the protective role of CST on Ang II-induced VSMC autophagy and proliferation. Moreover, blocking somatostatin receptor 3 and 5 (SSTR3 and SSTR5) partially abrogated the suppressive effect of CST on Ang II-stimulated VSMC proliferation and autophagy. SIGNIFICANCE This study indicated that CST could ameliorate Ang II-stimulated VSMC proliferation by inhibiting autophagy partially through its receptors SSTR3 and SSTR5, providing a reasonable evidence for CST as a novel perspective therapeutic target of vascular diseases. Obstructive nephropathy is a common clinical case that causes chronic kidney disease and ultimately progresses to end-stage renal disease. The activation of peroxisome proliferator-activated receptor-α (PPAR-α) reduces tubulointerstitial fibrosis and inflammation associated with obstructive nephropathy. AIMS This study was carried out to investigate the potential effect of saroglitazar, dual PPAR-α/γ agonist, in alleviating renal fibrosis induced by unilateralureteral obstruction (UUO). MAIN METHODS Twenty-four male Sprague Dawley rats were haphazardly divided into four groups of six rats each, including sham operated group, vehicle- or saroglitazar-treated UUO and saroglitazar groups. Rats received oral gavage of saroglitazar (3 mg/kg/day) for 13 days. On day 14, all rats were sacrificed; blood and renal tissues were collected. KEY FINDINGS Saroglitazar inhibited UUO-induced oxidative stress; it decreased the elevated levels of MDA and nitric oxide and increased levels of GSH and SOD in renal tissue. Moreover, saroglitazar repressed UUO-induced inflammation; it decreased the renal levels of nuclear factor kappa B (NF-κB) and interleukin-6 (IL-6). Furthermore, saroglitazar inhibited the accumulation of extracellular matrix via decreasing collagen, hydroxylproline and matrix metalloproteinase-9 (MMP-9) levels. Saroglitazar also decreased the expression of both the alpha smooth muscle actin (α-SMA) and tumor growth factor-beta (TGF-β). These effects were in parallel with reduction in mothers against decapentaplegic homolog 3 (smad3) expression and plasminogen activator inhibitor-1 (PAI-1) levels. SIGNIFICANCE Collectively, the protective impact of saroglitazar might be attributed to its antioxidant, anti-inflammatory and anti-fibrotic effects against UUO-induced tubulointerstitial fibrosis through its regulatory effect on TGF-β1/Smad3 signaling pathway.

Autoři článku: Holbrookmoreno2819 (Gold Mckenzie)