Bruusfallesen5681

Z Iurium Wiki

Verze z 7. 10. 2024, 19:52, kterou vytvořil Bruusfallesen5681 (diskuse | příspěvky) (Založena nová stránka s textem „Rhodium and platinum are amongst the less studied elements in estuarine waters and the understanding of their speciation analysis and environmental fate re…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Rhodium and platinum are amongst the less studied elements in estuarine waters and the understanding of their speciation analysis and environmental fate remains limited. In this study, we address the occurrence and discrimination of soluble/insoluble Rh and Pt species in aquatic systems, as well as their potential transport. Particulate and dissolved ( 65%). The potential transport evaluated at downstream station indicated recirculation within the estuary and export towards the Atlantic Ocean, with higher concentrations associated with the ebb opposing to the flood. These results show estuaries as important pathways to introduce PGE in coastal regions, transferring them towards the ocean.Recovering nitrogen and phosphorus from waste water in the form of struvite is an effective way to recycle resources. The insufficient purity of the resulting struvite and the large loss of nitrogen and phosphorus are the challenges at present. Therefore, it is urgent to develop innovative method in struvite crystallization process for efficient nitrogen and phosphorus recovery. This study proposed a crystallization method to reduce the loss of nitrogen and phosphorus by a struvite fluidized bed reactor (FBR) with optimized structure and operation conditions. The properties of struvite obtained under various conditions in the reactor were studied, and the internal operating conditions of the reactor were simulated with COMSOL Multiphysics to verify the effectiveness of the reactor optimization. This reactor achieved stable operation under the conditions of N/P = 11 and pH = 9.0. The purity of struvite obtained reached 98.5%, the conversion rate of ammonia nitrogen reached 97.2%, and struvite crystals could grow to 84 μm within 24 h. The simulation results showed that the Venturi tubes installed at multiple locations increased the turbulent energy to 4 × 10-4 m2/s2, which greatly improved the mass transfer efficiency. The trajectory of the crystal particles was consistent with the fluid flow field, which promoted the purification and growth of the crystal. In general, the new FBR with enhanced external recirculation would be a very feasible way to improve crystal growth and crystal purification of struvite, and it could enhance the recovery efficiency of nitrogen and phosphorus with reduced cost.Understanding how urbanisation and industrialisation interact with carbon emissions (CEs) among different regions informs the approaches for achieving emissions reduction targets and promoting regional economic development. However, this topic has not been adequately addressed in previous studies. Therefore, it is of great significance to conduct an empirical investigation of the interactions between urbanisation, industrialisation and CEs. Aided by the gravity model, the barycentre trajectories of urbanisation, industrialisation and CEs are analysed. Additionally, the total transfer amounts of industry and CEs are quantitatively examined by using an improved shift-share analysis method, and the spatial aggregation features of urbanisation, industrialisation and CEs are elucidated by constructing a three-dimensional (3D) contribution matrix model. The key conclusions are as follows (1) The barycentre of industrialisation and urbanisation migrated to the southwest, while that of CE migrated to the northwest and the speed of this movement was faster than that of urbanisation and industrialisation. (2) Industrial transfer mainly occurred in 2005-2012, while the turning point of industrial upgrading appeared in 2013. Furthermore, midwestern regions mainly underwent industrial transfer, while northwest regions always showed CEs transfer from 2005 to 2016. (3) To achieve coordination among urbanisation, industrialisation and emission reductions, 30 provinces are grouped into 8 types according to the 3D contribution matrix model, and optimisation strategies are proposed to highlight regional disparities. These findings have significant implications for making informed decisions regarding urbanisation and industrialisation development as well as emissions-reduction policies.Enrichment of soils in three urban drainage swales by metals associated with traffic sources was investigated in a cool temperate climate with seasonal snow. Such swales differed from those not exposed to snow by receiving additional pollutant loads from winter road maintenance involving applications of salt and grit, use of studded tires, and storage and melting of polluted snow cleared from trafficked areas into swales. Among the swales studied, swale L2 in the downtown was the oldest (built around 1960), drained runoff from a road with the highest traffic intensity, and exhibited the highest mean concentrations of most of the metals studied (Pb, Cu, Zn, Cr, Cd, Ni, Co, V, Ti, and W). In the case of Pb, this exceedance was about an order of magnitude 71 mg/kg DW in L2, compared to about ~8 mg/kg DW in L1 and L3, both built in 1979. Among the metals originating from local geology, barium (Ba) was found in the swales and the grit material at high concentrations of ~650 mg/kg DW and 700-1000 mg/kg DW, respectively. Such concentrations exceeded the Swedish EPA guideline limits of 300 mg/kg DW for less sensitive soil use. The sequential extraction analysis of samples from swale L2 indicated that Ba was mostly in the immobile residual fraction (90%). The absence of clear decline in metal concentrations with distance from the trafficked surfaces suggested that stored snow was another source of metals partly balancing spatial distribution of metals in swale soils.High resolution mass spectrometry (HRMS) was used to investigate the dissolved organic matter (DOM) profile of a reclamation water trial performed in the Llobregat River (Spain) during summer 2019. 23 water samples (including tertiary effluents, surface river and drinking water), taken during five sampling campaigns, were analyzed and their van Krevelen diagrams were compared. Selleck HPK1-IN-2 The reclaimed water fingerprint was substantially different from the natural profile of the river, showing a higher number of heteroatomic signals (i.e. CHON, CHOS and CHONS) and the presence of high-intensity S-containing features. As a result, reclaimed water discharge introduced substantial changes in the signature of the lignin-like and soot-like compositional-spaces of the river DOM fingerprint. However, the effect on the drinking water fingerprint was, ultimately, very limited. Only a limited number of features (up to 34) were detected as exclusively emitted with the reclaimed water. During the second phase of the trial, the tertiary effluent was chlorinated for disinfection purposes. This process triggered the unexpected formation of a myriad of new features along the Llobregat River. Notably, 109 brominated/chlorinated features were detected, probably generated as a consequence of the photochemical decay of the emitted chloramines and their free-radical reaction with DOM, and three of them persisted in the final drinking water. The formation of halogenated species in situ in the Llobregat River entails uncertainty at ecological and water treatment levels and should be studied carefully to fully disclose the risks associated to wastewater effluent disinfection.The appropriateness of using treated wastewater for crop or agricultural irrigation remains a bone of contention among experts and policymakers. Here, we outline and analyze not only the benefits but also the drawbacks of such a practice in order to suggest a way forward. To ensure that our review reflects the state-of-the-art in terms of technological advances and best practices, only literature published in the last decade is considered except for literature on the history of reuse. The review begins by highlighting growing water scarcity, the history of wastewater reuse in agriculture, and the limitations of existing studies. A short overview of the approach used in the write-up is outlined after the introduction. It then proceeds with an in-depth look at three broad areas environmental impacts, public health impacts, and economic impacts. In terms of environmental impacts, effects on soil quality, water resources, plant growth, and soil microbial communities are analyzed. For each sub-area, the positive effects are described before the negative ones. The same approach is then applied to public health impacts, the focus of which is on human exposure to heavy metals and pathogens, and economic impacts, which are assessed with particular reference to investment cost, financial benefit to wastewater treatment plants (WWTPs), farm expenditure and income. Having weighed the advantages and disadvantages in each area, innovative measures are proposed for optimizing the benefits and mitigating the drawbacks of using treated wastewater for crop irrigation. Special consideration was given to contaminants of emerging concern and the known or perceived environmental and health risks associated with these contaminants.Native pioneer plants of high environmental tolerance may be exploited as early colonisers in alkaline Fe-ore tailings to drive the development of functional prokaryotic microbial communities, which is one of the critical pedogenic processes leading to in situ soil formation in the tailings. The present study deployed high throughput Illumina Miseq sequencing, to characterise the diversity and potential functionality of prokaryotic microbial communities in the aged Fe-ore tailings and topsoils colonised by native plant species Maireana brevifolia at an Fe ore mine in Western Australia, in comparison with those in the tailings/topsoils without plants. The composition of prokaryotic microbial communities differed between the aged tailings (AT) and topsoil sites (TS). Aged tailings (AT1-AT3) contained more bacteria tolerant of alkaline/saline conditions (e.g., Alkalilimnicola sp.) and those related to Fe biogeochemical cycling (e.g., Acidiferrobacter sp., Aciditerrimonas sp.). In comparison, the prokaryotic microbial communities in the topsoil (TS) contained abundant bacteria related to N cycling (e.g., Rhizobium sp., Frankia sp.). The presence of M. brevifolia plants significantly increased the diversity of prokaryotic microbial communities in tailings and topsoil, particularly favouring the development of bacteria related to N cycling and OM degradations (e.g., Mesorhizobium sp. Paracoccus sp., Oxalicibacterium horti, and Microbacterium sp.). The variation of microbial community were mainly explained by pH, amorphous Fe, and total N, which were regulated by M. brevifolia colonisation. The beneficial roles of pioneer plants M. brevifolia in the development of prokaryotic microbial community in the alkaline Fe ore tailings may be integrated as a key factor when designing and scaling up the process of eco-engineering Fe-ore tailings into soil under semi-arid climatic conditions.Forests store significant quantities of carbon, and accurate quantification of the fate of this carbon after fire is necessary for global carbon accounting. Pyrogenic carbon (PyC) encompasses various carbonaceous products of incomplete combustion formed during fires and has potential to act as a carbon sink for up to millennia, but current estimates of PyC production in wildfires vary widely. Northern hardwood forests have changed dramatically in recent decades due to insect epidemics, such as the bark beetle epidemic in the Rocky Mountain Region which has caused widespread mortality. This study assessed impacts of bark beetle-induced mortality on fuel pyrolysis kinetics, carbon partitioning of combustion products, and net heat output to aid in forest fire modeling and carbon accounting by comparing healthy and beetle-killed lodgepole pine tree boles burned in a 2018 forest fire in southeast Wyoming, USA with unburned boles. Results showed charring predominantly restricted to the bark and cambium. Significant differences between burned and unburned healthy and beetle-impacted bark/cambium compositions were identified, and PyC production and energy output were quantified.

Autoři článku: Bruusfallesen5681 (Marcher Fuller)