Falkhoppe5910

Z Iurium Wiki

Verze z 7. 10. 2024, 18:01, kterou vytvořil Falkhoppe5910 (diskuse | příspěvky) (Založena nová stránka s textem „Ben Wielstra introduces the biology of hybrid zones where ranges of populations overlap, leading to production of hybrid offspring in these zones.Interview…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Ben Wielstra introduces the biology of hybrid zones where ranges of populations overlap, leading to production of hybrid offspring in these zones.Interview with Peter Sterling, author of Principles of Neural Design and What Is Health?Visual working memory (WM) storage is largely independent between the left and right visual hemifields/cerebral hemispheres, yet somehow WM feels seamless. We studied how WM is integrated across hemifields by recording neural activity bilaterally from lateral prefrontal cortex. An instructed saccade during the WM delay shifted the remembered location from one hemifield to the other. Before the shift, spike rates and oscillatory power showed clear signatures of memory laterality. After the shift, the lateralization inverted, consistent with transfer of the memory trace from one hemisphere to the other. Transferred traces initially used different neural ensembles from feedforward-induced ones, but they converged at the end of the delay. Around the time of transfer, synchrony between the two prefrontal hemispheres peaked in theta and beta frequencies, with a directionality consistent with memory trace transfer. This illustrates how dynamics between the two cortical hemispheres can stitch together WM traces across visual hemifields.Correlational evidence in humans suggests that selective difficulties hearing in noisy, social settings may reflect premature auditory nerve degeneration. Here, we induced primary cochlear neural degeneration (CND) in adult mice and found direct behavioral evidence for selective detection deficits in background noise. To identify central determinants for this perceptual disorder, we tracked daily changes in ensembles of layer 2/3 auditory cortex parvalbumin-expressing inhibitory neurons and excitatory pyramidal neurons with chronic two-photon calcium imaging. CND induced distinct forms of plasticity in cortical excitatory and inhibitory neurons that culminated in net hyperactivity, increased neural gain, and reduced adaptation to background noise. Ensemble activity measured while mice detected targets in noise could accurately decode whether individual behavioral trials were hits or misses. After CND, random surges of hypercorrelated cortical activity occurring just before target onset reliably predicted impending detection failures, revealing a source of internal cortical noise underlying perceptual difficulties in external noise.Immune checkpoint inhibition has revolutionized the treatment of many cancers, including melanoma. However, primary and acquired resistance remain key challenges for the field. Promising results from a phase I clinical trial recently published in Science highlight the potential of modulating the microbiome via fecal transplant to overcome resistance to immunotherapy.A new study in Nature determines metastatic tropism in xenograft mouse models. This results in a metastasis map for 21 tumor types, the utility of which is demonstrated by identifying lipid metabolism to be uniquely altered in breast cancer cell lines that metastasize to the brain.Adoptive cell immunotherapy using in vitro expanded autologous tumor-infiltrating lymphocytes has the potential to mediate durable remission of certain types of cancer. A recent paper in Science shows that complete and durable control of metastatic melanoma requires the infusion of tumor-specific CD8+ T cells that have stem-cell-like properties.Writing in Cancer Cell and Cell, two groups investigate the nature of dormant cancer cells that persist after chemotherapy. These cells adopt a state that resembles diapause, an evolutionarily conserved adaptation used by embryos to survive inhospitable conditions. Understanding cancer diapause could uncover therapeutic strategies that reduce cancer relapse.Tumor suppressor p53 lacks conventional drug binding pockets that would facilitate rescue of cancer-driving mutations. In this issue, Chen et al. discover a new role for an old drug, arsenic trioxide, in binding and stabilizing p53. The arsenic atom binds in a conserved, cryptic site and reactivates multiple p53 mutants.Comorbid conditions among cancer survivors are not a stranger to oncologists, but the conditions change when the cancer therapy toolbox expands. New interdisciplinary fields are recognized. We ask clinicians from psycho-oncology, cardio-oncology, and neurology to tell us how the fields have progressed and what to expect when we are standing at the crossroads of cancer.DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.Transcription factors (TFs) regulate gene expression by binding to specific consensus motifs within the local chromatin context. The mechanisms by which TFs navigate the nuclear environment as they search for binding sites remain unclear. Here, we used single-molecule tracking and machine-learning-based classification to directly measure the nuclear mobility of the glucocorticoid receptor (GR) in live cells. We revealed two distinct and dynamic low-mobility populations. One accounts for specific binding to chromatin, while the other represents a confinement state that requires an intrinsically disordered region (IDR), implicated in liquid-liquid condensate subdomains. Further analysis showed that the dwell times of both subpopulations follow a power-law distribution, consistent with a broad distribution of affinities on the GR cistrome and interactome. Together, our data link IDRs with a confinement state that is functionally distinct from specific chromatin binding and modulates the transcriptional output by increasing the local concentration of TFs at specific sites.Heparin, a mammalian polysaccharide, is a widely used anticoagulant medicine to treat thrombotic disorders. It is also known to improve outcomes in sepsis, a leading cause of mortality resulted from infection-induced immune dysfunction. Whereas it is relatively clear how heparin exerts its anticoagulant effect, the immunomodulatory mechanisms enabled by heparin remain enigmatic. Here, we show that heparin prevented caspase-11-dependent immune responses and lethality in sepsis independent of its anticoagulant properties. Heparin or a chemically modified form of heparin without anticoagulant function inhibited the alarmin HMGB1-lipopolysaccharide (LPS) interaction and prevented the macrophage glycocalyx degradation by heparanase. These events blocked the cytosolic delivery of LPS in macrophages and the activation of caspase-11, a cytosolic LPS receptor that mediates lethality in sepsis. Survival was higher in septic patients treated with heparin than those without heparin treatment. The identification of this previously unrecognized heparin function establishes a link between innate immune responses and coagulation.Cellulose is the most abundant organic molecule on Earth and represents a renewable and practically everlasting feedstock for the production of biofuels and chemicals. Elimusertib Self-assembled owing to the high-affinity cohesin-dockerin interaction, cellulosomes are huge multi-enzyme complexes with unmatched efficiency in the degradation of recalcitrant lignocellulosic substrates. The recruitment of diverse dockerin-borne enzymes into a multicohesin protein scaffold dictates the three-dimensional layout of the complex, and interestingly two alternative binding modes have been proposed. Using single-molecule fluorescence resonance energy transfer and molecular simulations on a range of cohesin-dockerin pairs, we directly detect varying distributions between these binding modes that follow a built-in cohesin-dockerin code. Surprisingly, we uncover a prolyl isomerase-modulated allosteric control mechanism, mediated by the isomerization state of a single proline residue, which regulates the distribution and kinetics of binding modes. Overall, our data provide a novel mechanistic understanding of the structural plasticity and dynamics of cellulosomes.Cells from across the eukaryotic tree use actin polymer networks for a wide variety of functions, including endocytosis, cytokinesis, and cell migration. Despite this functional conservation, the actin cytoskeleton has undergone significant diversification, highlighted by the differences in the actin networks of mammalian cells and yeast. Chytrid fungi diverged before the emergence of the Dikarya (multicellular fungi and yeast) and therefore provide a unique opportunity to study actin cytoskeletal evolution. Chytrids have two life stages zoospore cells that can swim with a flagellum and sessile sporangial cells that, like multicellular fungi, are encased in a chitinous cell wall. Here, we show that zoospores of the amphibian-killing chytrid Batrachochytrium dendrobatidis (Bd) build dynamic actin structures resembling those of animal cells, including an actin cortex, pseudopods, and filopodia-like spikes. In contrast, Bd sporangia assemble perinuclear actin shells and actin patches similar to those of yeast. The use of specific small-molecule inhibitors indicate that nearly all of Bd's actin structures are dynamic and use distinct nucleators although pseudopods and actin patches are Arp2/3 dependent, the actin cortex appears formin dependent and actin spikes require both nucleators. Our analysis of multiple chytrid genomes reveals actin regulators and myosin motors found in animals, but not dikaryotic fungi, as well as fungal-specific components. The presence of animal- and yeast-like actin cytoskeletal components in the genome combined with the intermediate actin phenotypes in Bd suggests that the simplicity of the yeast cytoskeleton may be due to evolutionary loss.Planar polarity describes the coordinated polarization of cells within the plane of a tissue. This is controlled by two main pathways in Drosophila the Frizzled-dependent core planar polarity pathway and the Fat-Dachsous pathway. Components of both of these pathways become asymmetrically localized within cells in response to long-range upstream cues, and form intercellular complexes that link polarity between neighbouring cells. This review examines if and when the two pathways are coupled, focusing on the Drosophila wing, eye and abdomen. There is strong evidence that the pathways are molecularly coupled in tissues that express a specific isoform of the core protein Prickle, namely Spiny-legs. However, in other contexts, the linkages between the pathways are indirect. We discuss how the two pathways act together and independently to mediate a diverse range of effects on polarization of cell structures and behaviours.

Autoři článku: Falkhoppe5910 (Borup Love)