Mckinneynorup9359

Z Iurium Wiki

Verze z 7. 10. 2024, 17:17, kterou vytvořil Mckinneynorup9359 (diskuse | příspěvky) (Založena nová stránka s textem „ver the experimentally relevant range of temperatures (up to 1100 °C). Remarkably, the net charge donated from the three triade atoms to atomic gold upon…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

ver the experimentally relevant range of temperatures (up to 1100 °C). Remarkably, the net charge donated from the three triade atoms to atomic gold upon intermixing is similar in triade sub-nanometeric clusters and at extended triade surfaces. Gold clusters are prone to host Fe, Co, and Ni atoms at the center of their structures and the exchange process is predicted to be exothermic at 0 K even for a small cluster made of 13 atoms. More generally, our work highlights the importance of the polarity of the chemical bond between unlike metal atoms in alloys.Unmanned aerial vehicles (UAVs) have been used as a new chemical reconnaissance platform in chemical, biological, radiological, and nuclear detection and in industrial monitoring and environmental research, owing to their mobility, unconventional accessibility, and safety. Based on the UAV's payload and operational time considerations, the ultralight chip-sized chemical sensor is the most promising candidate for chemical reconnaissance among various chemical sensors. To optimize the UAV's chip-sensor performance, realistic outdoor tests of chemical sensors during UAV flights have to be conducted to verify their performances. In this study, indoor and outdoor experiments were conducted with a carbon nanotube (CNT)-based chip sensor installed on the UAV to detect dimethyl methylphosphonates (DMMPs), commonly used as chemical warfare agent simulants. Based on the indoor tests, DMMP concentrations and the position/direction of the CNT sensor were analyzed to optimize the sensing performances during UAV operations. Based on outdoor tests, we confirmed that the chemical sensor mounted on the UAV could detect DMMP gases by moving designated pathways in realistic conditions.A high-quality organolead trihalide perovskite film with large-sized crystalline grains and smooth surfaces is required to obtain efficient perovskite solar cells (PSCs). Herein, high-quality (FAPbI3)0.97(MAPbBr3)0.03 perovskite films were fabricated using trimesic acid (TMA) additives in a halide perovskite precursor solution to obtain efficient PSCs. The X-ray diffraction analysis and scanning electron microscopy of the films revealed that the TMA had a significant effect on the roughness of the films by acting as a surface link, thus reducing the surface defects and recombination at the grain boundaries. In addition, with the addition of the TMA additive, a smooth perovskite film with a flat surface and no pinholes was obtained. The perovskite film was used to fabricate a PSC device, and the device exhibited a high power conversion efficiency of 17.26%, which was higher than that of the control device (15.15%) under the same conditions. This study demonstrates a facile method to passivate defects on the perovskite layer via surface modification.Addressing the issue of suffocation and casualties caused by a large amount of poisonous CO gas generated after a gas explosion, research involving an experimental system for the removal of CO using a Cu-Mn elimination agent was studied. The influence of O2 concentration, temperature, and CO concentration on the elimination performance of the agent after a gas explosion was studied. The quantitative relationship between the amount of CO eliminated, the elimination rate, the O2 concentration, and temperature was analyzed. Further analysis was completed regarding the influence of O2 concentration, temperature, and CO concentration on the thermal effect in the elimination process. The results showed that the elimination agent had a rapid effect on the removal of CO. When the ratio of CO concentration to O2 concentration was closer to the stoichiometric ratio, the elimination and reaction were more complete, the time to complete elimination was shorter, and the peak temperature was higher. As the temperature increased, the time to reach the elimination limit became longer, the elimination rate decreased, the reaction was slower, and the peak temperature was lower. As the CO concentration increased, it was observed that the higher the peak temperature, the longer it took to reach the peak time. The results of the study provide a theoretical support for the catalytic oxidation of CO using the Cu-Mn eliminator after a coal mine gas explosion.To assess the effects of intake components and n-butanol application on compression-ignition engines, an experiment was carried out based on a single-cylinder engine fueled with n-butanol/diesel-blended fuel. The results show that with the increased n-butanol fraction of the blended fuel, the emissions of particulate mass (PM) decrease significantly, but the NO x and hydrocarbon (HC) emissions deteriorate. For B15 and B30, the PM emissions are 66.2% and 74.4% lower than B0, respectively. Furthermore, exhaust gas recirculation (EGR) was introduced to reduce the NO x emissions. However, a large EGR rate significantly reduces the indicated thermal efficiency (ITE) of the engine. Compared with the non-EGR condition, the ITE of B15 and B30 decrease by 3.1% and 3.8%, respectively, when the EGR rate is 18%. At the same time, the PM and HC emissions are found to be increased greatly. The PM emission of B15 and B30 increases by 69% and 46% and the HC emission increase by 150% and 71%, respectively. this website To restrain the engine emissions caused by the EGR, pure oxygen is further introduced into the intake charge. It is found that both the PM and HC emissions are significantly reduced with the introduction of extra oxygen. Under the condition of the 18% EGR rate, increasing oxygen addition to 4% can reduce HC emissions by more than 50% and the total particle mass of B15 and B30 is reduced by 60.6% and 47.7%, respectively. Moreover, the ITE reduction and combustion deterioration caused by the large EGR are found to be alleviated. By adjusting the n-butanol ratio, EGR rate, and oxygen addition, the excellent performance of combustion and emission can be achieved in an n-butanol/diesel blend fueled engine.Mango (Mangifera indica) is a tropical fruit highly desired for its vitamin content and flavor, but its peel is considered a byproduct or waste. However, mango peel contains some bioactive compounds that improve food quality matrix for the development of edible coatings or films. The effect of phenolic mango (Mangifera indica) peel extracts on the physicochemical, rheological, and microstructural properties of xanthan gum-based coating solutions was evaluated. The obtained solutions were stable during the study period and presented a non-Newtonian fluid type shear-thinning behavior described by Ostwald-de Waele. Moreover, viscoelastic properties revealed that the elastic modulus was higher than the viscous modulus, showing a characteristic of weak gels. The addition of extracts did not alter the shear rate and viscoelastic character of the solutions, preserving the pseudoplasticity and weak gel behavior of xanthan gum associated with spreadability and adherence of coatings; it modified the gel structure as a function of temperature.

Autoři článku: Mckinneynorup9359 (Anthony Craven)