Everettmorrison3162

Z Iurium Wiki

Verze z 7. 10. 2024, 16:25, kterou vytvořil Everettmorrison3162 (diskuse | příspěvky) (Založena nová stránka s textem „Arterial blood gas (ABG) measurements at both maximum depth and at resurfacing prior to breathing have not previously been measured during free dives condu…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Arterial blood gas (ABG) measurements at both maximum depth and at resurfacing prior to breathing have not previously been measured during free dives conducted to extreme depth in cold open-water conditions. An elite free diver was instrumented with a left radial arterial cannula connected to two sampling syringes through a low-volume splitting device. He performed two open-water dives to a depth of 60 m (197', 7 atmospheres absolute pressure) in the constant weight with fins competition format. ABG samples were drawn at 60 m (by a mixed-gas scuba diver) and again on resurfacing before breathing. An immersed surface static apnea, of identical length to the dives and with ABG sampling at identical times, was also performed. Both dives lasted approximately 2 min. Arterial partial pressure of oxygen ([Formula see text]) increased during descent from an indicative baseline of 15.8 kPa (after hyperventilation and glossopharyngeal insufflation) to 42.8 and 33.3 kPa (dives 1 and 2) and decreased precipitously (to 8. in two dives to 60 m (197') of 2 min duration. Changes in arterial oxygen and carbon dioxide (an increase during descent, and a decrease during ascent) support previous observations in less extreme dives and environments.The regulation of mean arterial pressure (MAP) during exercise has important physiological and clinical implications. Kinetics analysis on numerous physiological variables following the transition from unloaded-to-loaded exercise has revealed important information regarding their control. Surprisingly, the dynamic response of MAP during this transition remains to be quantified. Therefore, ten healthy participants (5/5 M/F, 24 ± 3 yr) completed repeated transitions from unloaded to moderate- and heavy-intensity dynamic single-leg knee-extensor exercise to investigate the on-kinetics of MAP. Following the transition to loaded exercise, MAP increased in a first-order dynamic manner, subsequent to a time delay (moderate 23 ± 10; heavy 19 ± 9 s, P > 0.05) at a speed (τ, moderate 59 ± 30; heavy 66 ± 19 s, P > 0.05), which did not differ between intensities, but the MAP amplitude was doubled during heavy-intensity exercise (moderate 12 ± 5; heavy 24 ± 8 mmHg, P less then 0.001). The reproducibility [coefficient of of this variable. This investigation reveals that kinetic modeling of MAP following unloaded-to-loaded knee-extensor exercise is practical and repeatable. Additional preliminary findings in hypertensive and, age-matched, normotensive subjects suggest that MAP kinetics may provide insight into cardiovascular health and the effect of aging.Flow-mediated dilation (FMD), mainly mediated by nitric oxide (NO), aims to assess the shear-induced endothelial function, which is widely quantified by the relative change in arterial diameter after dilation (FMD%). However, FMD% is affected by individual differences in blood pressure, blood flow and arterial diameter. To reduce these differences and enhance the assessment of FMD to endothelial function, we continuously measured not only the brachial artery diameter and blood flow with ultrasound but also blood pressure with non-invasive monitor during standard FMD test. We further constructed an analytical model of FMD coupled with NO transport, blood flow, and arterial deformation. Combining the time-averaged and peak values of arterial diameter, blood flow and pressure, and the modeling, we assumed the artery was completely healthy and calculated an ideally expected FMD% (eFMD%). Then, we expressed the fractional flow-mediated dilation (FFMD%) for the ratio of measured FMD% (mFMD%) to eFMD%. Furthermore, using the continuous waveforms of arterial diameter, blood flow and pressure, the endothelial characteristic parameter (ϵ) was calculated, which describes the function of the endothelium to produce NO and ranges from 1 to 0 representing the endothelial function from healthiness to complete loss. We found that the mFMD% and eFMD% between the young age (n=5, 21.2±1.8yr) and middle age group (n=5, 34.0±2.1yr) have no significant difference (P=0.222, P=0.385). In contrast, the FFMD% (P=0.008) and ϵ (P=0.007) both show significant differences. Therefore, the fractional flow-mediated dilation (FFMD%) and the endothelial characteristic parameter (ϵ) may have the potential for specifically diagnosing the endothelial function.Ketamine is the recommended analgesic on the battlefield for soldiers with hemorrhage, despite a lack of supportive evidence from laboratory or clinical studies. Hence, this study determined the effects of ketamine analgesia on cardiorespiratory responses and survival to moderate (37% blood volume; n = 8/group) or severe hemorrhage (50% blood volume; n = 10/group) after trauma in rats. We used a conscious hemorrhage model with extremity trauma (fibular fracture + soft tissue injury) while measuring mean arterial pressure (MAP), heart rate (HR), and body temperature (Tb) by telemetry, and respiration rate (RR), minute volume (MV), and tidal volume (TV) via whole body plethysmography. Male rats received saline (S) or 5.0 mg/kg ketamine (K) (100 µL/100 g body wt) intra-arterially after trauma and hemorrhage. All rats survived 37% hemorrhage. For 50% hemorrhage, neither survival times [180 min (SD 78) vs. see more 209 min (SD 66)] nor percent survival (60% vs. 80%) differed between S- and K-treated rats. After 37% hemorrhage, K (compared with S) increased MAP and decreased Tb and MV. After 50% hemorrhage, K (compared with S) increased MAP but decreased HR and MV. K effects on cardiorespiratory function were time dependent, significant but modest, and transient at the analgesic dose given. K effects on Tb were also significant but modest and more prolonged. With the use of this rat model, our data support the use of K as an analgesic in injured, hypovolemic patients.NEW & NOTEWORTHY Ketamine administration at a dose shown to alleviate pain in nonhemorrhaged rats with extremity trauma had only modest and transient effects on multiple aspects of cardiorespiratory function after both moderate (37%) and severe (50%) traumatic hemorrhages. Such effects did not alter survival.

Autoři článku: Everettmorrison3162 (Underwood Ring)