Justesennilsson9436

Z Iurium Wiki

Verze z 7. 10. 2024, 13:47, kterou vytvořil Justesennilsson9436 (diskuse | příspěvky) (Založena nová stránka s textem „inflammatory molecules and antitumor immunity in melanoma, and highlight that A20 can be exploited as a promising target to bring clinical benefit to melan…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

inflammatory molecules and antitumor immunity in melanoma, and highlight that A20 can be exploited as a promising target to bring clinical benefit to melanomas refractory to immune checkpoint blockade.T cells that recognize self-antigens and mutated neoantigens are thought to mediate antitumor activity of immune checkpoint blockade (ICB) in melanoma. Few studies have analyzed self and neoantigen-specific T cell responses in patients responding to ICB. Here, we report a patient with metastatic melanoma who had a durable clinical response after treatment with the programmed cell death protein 1 inhibitor, nivolumab, combined with the first-in-class CD122-preferential interleukin-2 pathway agonist, bempegaldesleukin (BEMPEG, NKTR-214). We used a combination of antigen-specific T cell expansion and measurement of interferon-γ secretion to identify multiple CD4+ and CD8+ T cell clones specific for neoantigens, lineage-specific antigens and cancer testis antigens in blood and tumor from this patient prior to and after therapy. Polyclonal CD4+ and CD8+ T cells specific to multiple neoantigens but not self-antigens were highly enriched in pretreatment tumor compared with peripheral blood. Neoantigen, but not self-antigen-specific T cell clones expanded in frequency in the blood during successful treatment. There was evidence of dramatic immune infiltration into the tumor on treatment, and a modest increase in the relative frequency of intratumoral neoantigen-specific T cells. These observations suggest that diverse CD8+ and CD4+ T cell clones specific for neoantigens present in tumor before treatment had a greater role in immune tumor rejection as compared with self-antigen-specific T cells in this patient. Trial registration number NCT02983045.The coronavirus disease 2019 (COVID-19) has caused a global pandemic, resulting in considerable morbidity and mortality. Tocilizumab, an inhibitor of IL-6, has been widely repurposed as a treatment of severely ill patients without robust evidence supporting its use. In this study, we aimed to systematically describe the effectiveness of treatment and prevention of the cytokine storms in COVID-19 patients with tocilizumab. In this multicentered retrospective and observational cohort study, 65 patients with COVID-19 receiving tocilizumab and 130 not receiving tocilizumab were propensity score matched at a ratio of 21 based on age, sex, and comorbidities from January 20, 2020 to March 18, 2020 in Wuhan, China. After adjusting for confounding, the detected risk for in-hospital death was lower in the tocilizumab group versus nontocilizumab group (hazard ratio = 0.47; 95% confidence interval = 0.25-0.90; p = 0.023). Moreover, use of tocilizumab was associated with a lower risk of acute respiratory distress syndrome (odds ratio = 0.23; 95% confidence interval = 0.11-0.45; p less then 0.0001). Furthermore, patients had heightened inflammation and more dysregulated immune cells before treatment, which might aggravate disease progression. After tocilizumab administration, abnormally elevated IL-6, C-reactive protein, fibrinogen, and activated partial thromboplastin time decreased. Tocilizumab may be of value in prolonging survival in patients with severe COVID-19, which provided a novel strategy for COVID-19-induced cytokine release syndrome. Our findings could inform bedside decisions until data from randomized, controlled clinical trials become available.Several dinucleotide cyclases, including cyclic GMP-AMP synthase, and their involvement in STING-mediated immunity have been extensively studied. In this study, we tested five bacterial diguanylate cyclases from the Gram-negative bacterium Salmonella Enteritidis, identifying AdrA as the most potent inducer of a STING-mediated IFN response. AdrA wild-type (wt) or its inactive version AdrA mutant (mut) were delivered by an adenovirus (Ad) vector. Dendritic cells obtained from wt mice and infected in vitro with Ad vector containing AdrA wt, but not mut, had increased activation markers and produced large amounts of several immunostimulatory cytokines. For dendritic cells derived from STING-deficient mice, no activation was detected. The potential antiviral activity of AdrA was addressed in hepatitis B virus (HBV)-transgenic and adenovirus-associated virus (AAV)-HBV mouse models. selleck inhibitor Viremia in serum of Ad AdrA wt-treated mice was reduced significantly compared with that in Ad AdrA mut-injected mice. The viral load in the liver at sacrifice was in line with this finding. To further elucidate the molecular mechanism(s) by which AdrA confers its antiviral function, the response in mice deficient in STING or its downstream effector molecules was analyzed. wt and IFN-αR (IFNAR)-/- animals were additionally treated with anti-TNF-α (Enbrel). Interestingly, albeit less pronounced than in wt mice, in IFNAR-/- and Enbrel-treated wt mice, a reduction of serum viremia was achieved-an observation that was lost in anti-TNF-α-treated IFNAR-/- animals. No effect of AdrA wt was seen in STING-deficient animals. Thus, although STING is indispensable for the antiviral activity of AdrA, type I IFN and TNF-α are both required and act synergistically.Gaining detailed insights into the role of host immune responses in viral clearance is critical for understanding COVID-19 pathogenesis and future treatment strategies. Although studies analyzing humoral immune responses against SARS-CoV-2 were available rather early during the pandemic, cellular immunity came into focus of investigations just recently. For the present work, we have adapted a protocol designed for the detection of rare neoantigen-specific memory T cells in cancer patients for studying cellular immune responses against SARS-CoV-2. Both CD4+ and CD8+ T cells were detected after 6 d of in vitro expansion using overlapping peptide libraries representing the whole viral protein. The assay readout was an intracellular cytokine staining and flow cytometric analysis detecting four functional markers simultaneously (CD154, TNF, IL-2, and IFN-γ). We were able to detect SARS-CoV-2-specific T cells in 10 of 10 COVID-19 patients with mild symptoms. All patients had reactive T cells against at least 1 of 12 analyzed viral Ags, and all patients had Spike-specific T cells. Although some Ags were detected by CD4+ and CD8+ T cells, VME1 was mainly recognized by CD4+ T cells. Strikingly, we were not able to detect SARS-CoV-2-specific T cells in 18 unexposed healthy individuals. When we stimulated the same samples overnight, we measured significant numbers of cytokine-producing cells even in unexposed individuals. Our comparison showed that the stimulation conditions can profoundly impact the activation readout in unexposed individuals. We are presenting a highly specific diagnostic tool for the detection of SARS-CoV-2-reactive T cells.Flagellin is an immunodominant Ag in Crohn disease, with many patients showing anti-flagellin Abs. To study the clonality of flagellin-reactive CD4 cells in Crohn patients, we used a common CD154-based enrichment method following short-term Ag exposure to identify Ag-reactive CD4 cells. CD154 expression and cytokine production following Ag exposure compared with negative control responses (no Ag exposure) revealed that only a small fraction of CD154-enriched cells could be defined by Ag-reactive cytokine responses. This was especially true for low-frequency flagellin-reactive CD4 cells compared with polyclonal stimulation or Candida albicans Ag exposure. Moreover, we found that culture conditions used for the assay contributed to background CD40L (CD154) expression in the CD154-enriched CD4 cells. Using a cut-off rule based on flow cytometry results of the negative control CD154-enriched CD4 cells, we could reliably find the fraction of Ag-reactive cells in the CD154-enriched population. Ag-reactive CD4 cytokine production was restricted to CD4 cells with an effector memory phenotype and the highest levels of induced CD154 expression. This has important implications for identifying Ag-specific T cells of interest for single cell cloning, phenotyping, and transcriptomics.With the approach of respiratory virus season in the Northern Hemisphere, clinical microbiology and public health laboratories will need rapid diagnostic assays to distinguish severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from influenza virus and respiratory syncytial virus (RSV) infections for diagnosis and surveillance. In this study, the clinical performance of the Xpert Xpress SARS-CoV-2/Flu/RSV test (Cepheid, Sunnyvale, CA, USA) for nasopharyngeal swab specimens was evaluated in four centers Johns Hopkins Medical Microbiology Laboratory, Northwell Health Laboratories, NYC Public Health Laboratory, and Los Angeles County/University of Southern California (LAC+USC) Medical Center. A total of 319 nasopharyngeal swab specimens, positive for SARS-CoV-2 (n = 75), influenza A virus (n = 65), influenza B virus (n = 50), or RSV (n = 38) or negative (n = 91) by the standard-of-care nucleic acid amplification tests at each site, were tested using the Cepheid panel test. The overall positive percent agreement for the SARS-CoV-2 target was 98.7% (n = 74/75), and the negative agreement was 100% (n = 91), with all other analytes showing 100% total agreement (n = 153). Standard-of-care tests to which the Cepheid panel was compared included the Cepheid Xpert Xpress SARS-CoV-2, Cepheid Xpert Xpress Flu/RSV, GenMark ePlex respiratory panel, BioFire respiratory panel 2.1 and v1.7, DiaSorin Simplexa COVID-19 Direct, and Hologic Panther Fusion SARS-CoV-2 assays. The Xpert Xpress SARS-CoV-2/Flu/RSV test showed high sensitivity and accuracy for all analytes included in the test. This test will provide a valuable clinical diagnostic and public health solution for detecting and differentiating SARS-CoV-2, influenza A and B virus, and RSV infections during the current respiratory virus season.During the ongoing coronavirus disease 2019 (COVID-19) outbreak, robust detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key element for clinical management and to interrupt transmission chains. We organized an external quality assessment (EQA) of molecular detection of SARS-CoV-2 for European expert laboratories. An EQA panel composed of 12 samples, containing either SARS-CoV-2 at different concentrations to evaluate sensitivity or other respiratory viruses to evaluate specificity of SARS-CoV-2 testing, was distributed to 68 laboratories in 35 countries. Specificity samples included seasonal human coronaviruses hCoV-229E, hCoV-NL63, and hCoV-OC43, as well as Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and human influenza viruses A and B. Sensitivity results differed among laboratories, particularly for low-concentration SARS-CoV-2 samples. Results indicated that performance was mostly independent of the selection of specific extraction or PCR methods.We describe the design, development, analytical performance, and a limited clinical evaluation of the 10-color Xpert MTB/XDR assay (CE-IVD only, not for sale in the United States). This assay is intended as a reflex test to detect resistance to isoniazid (INH), fluoroquinolones (FLQ), ethionamide (ETH), and second-line injectable drugs (SLIDs) in unprocessed sputum samples and concentrated sputum sediments which are positive for Mycobacterium tuberculosis The Xpert MTB/XDR assay simultaneously amplifies eight genes and promoter regions in M. tuberculosis and analyzes melting temperatures (Tm s) using sloppy molecular beacon (SMB) probes to identify mutations associated with INH, FLQ, ETH, and SLID resistance. Results can be obtained in under 90 min using 10-color GeneXpert modules. The assay can differentiate low- versus high-level resistance to INH and FLQ as well as cross-resistance versus individual resistance to SLIDs by identifying mutation-specific Tm s or Tm patterns generated by the SMB probes. The assay has a limit of detection comparable to that of the Xpert MTB/RIF assay and successfully detected 16 clinically significant mutations in a challenge set of clinical isolate DNA.

Autoři článku: Justesennilsson9436 (Bloom Sykes)