Ismailgaarde3445

Z Iurium Wiki

Verze z 7. 10. 2024, 13:30, kterou vytvořil Ismailgaarde3445 (diskuse | příspěvky) (Založena nová stránka s textem „The regeneration of the active ZnO-MoS2 layer also proved to be quite efficient with no compromise in the dye removal efficiency.Recycling is an important…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The regeneration of the active ZnO-MoS2 layer also proved to be quite efficient with no compromise in the dye removal efficiency.Recycling is an important habit to avoid waste. This paper evaluates the performance of masonry mortar, elaborated by replacing natural sand with recycled fine aggregate (RFA) obtained from mortar. Five families of mixtures were prepared with different replacement proportions 20%, 40%, 60%, and 100%. A 14 volumetric cement-to-aggregate ratio was used for all mixtures by experimentally adjusting the amount of water to achieve the same consistency of 175 ± 5 mm. The effects of the following procedures were analyzed (1) the use of a deconstruction technique to collect the RFA, (2) pre-wetting of the aggregates, and (3) the use of a commercial plasticizer. Experimental results show that it is possible to use this type of recycled fine aggregate as a substitute for natural sand by up to 60% in the manufacture of masonry mortar without significantly affecting its properties.When a thick laminate is subjected to bending, under certain boundary conditions, wrinkles may appear and develop due to the inextensibility of the fibers. Wrinkling is one of the most critical defects in composite manufacturing. Numerical simulation of the onset and growth of such wrinkles is an important tool for defining optimal process parameters. Herein, several bending experiments of thick laminates are presented. They were found to lead to severe wrinkling and delamination of different kinds. It is shown that the history of loading changed the developed wrinkles. Stress resultant shell finite elements specific to textile reinforcement forming show their relevance to provide, for these wrinkles induced by bending, results in good agreement with the experiments, both with regard to the onset of the wrinkles and to their development. This numerical approach was used to improve the understanding of the phenomena involved in wrinkling and to define the conditions required to avoid it in a given process.In this work, a novel multilayer structure thin-film thermoelectric device is proposed for preparing a high performance generator. The result shows that the output voltage of the three-layer thin-film device has a linear increasing trend with the increasing temperature difference. Additionally, the device was also tested as a laser power measurement and displays that it has good sensitivity. Moreover, we also fabricated the multilayer device based on the present three-layer structure. It improves upon the similar output prosperities, confirming that the present multilayer structure thin-film thermoelectric device can be considered for preparing high performance micro-self-powered sources and sensors.Nanostructured composite materials based on noble mono-(Pd) or bi-metallic (Ag/Pd) particles supported on mixed iron oxides (II/III) with bulk magnetite structure (Fe3O4) have been developed in order to assess their potential for heterogeneous catalysis applications in methane partial oxidation. Advancing the direct transformation of methane into value-added chemicals is consensually accepted as the key to ensuring sustainable development in the forthcoming future. On the one hand, nanosized Fe3O4 particles with spherical morphology were synthesized by an aqueous-based reflux method employing different Fe (II)/Fe (III) molar ratios (2 or 4) and reflux temperatures (80, 95 or 110 °C). The solids obtained from a Fe (II)/Fe (III) nominal molar ratio of 4 showed higher specific surface areas which were also found to increase on lowering the reflux temperature. The starting 80 m2 g-1 was enhanced up to 140 m2 g-1 for the resulting optimized Fe3O4-based solid consisting of nanoparticles with a 15 nm average diameter. On the other hand, Pd or Pd-Ag were incorporated post-synthesis, by impregnation on the highest surface Fe3O4 nanostructured substrate, using 1-3 wt.% metal load range and maintaining a constant PdAg ratio of 82 in the bimetallic sample. The prepared nanocomposite materials were investigated by different physicochemical techniques, such as X-ray diffraction, thermogravimetry (TG) in air or H2, as well as several compositions and structural aspects using field emission scanning and scanning transmission electron microscopy techniques coupled to energy-dispersive X-ray spectroscopy (EDS). Finally, the catalytic results from a preliminary reactivity study confirmed the potential of magnetite-supported (Ag)Pd catalysts for CH4 partial oxidation into formaldehyde, with low reaction rates, methane conversion starting at 200 °C, far below temperatures reported in the literature up to now; and very high selectivity to formaldehyde, above 95%, for Fe3O4 samples with 3 wt.% metal, either Pd or Pd-Ag.It was hypothesized that white-rot fungus fermented with rice straw and purple field corn improves nutrient utilization via enhanced digestibility and lowers methane (CH4) production due to the effects of the lovastatin compound. The aim of the current experiment was to investigate the effect of inoculation of two fungi belonging to white-rot fungus type on feed value and ruminal fermentation characteristic. The experiment was carried out according to a completely randomized 3 × 3 factorial design three roughage sources (rice straw, purple corn stover, and purple corn field cob) for three inoculation methods (untreated, P. ostreatus treated, and V. MHY1485 mouse volvacea treated). The two fungi increased concentration of lovastatin when compared to the untreated, and P. ostreatus had higher lovastatin production potential than V. volvacea (p 0.05), while P. ostreatus resulted in increased levels of ruminal ammonia-nitrogen concentrations. Propionic acid increased in all roughages fermented with P. ostreatus or V. volvacea after 8 h of ruminal fermentation testing. The two fungi fermented as substrate treatments had significantly lower (p less then 0.05) CH4 production. Based on the improved rumen DM digestibility and reduced CH4 production, P. ostreatus and V. volvacea could be utilized for enhancing feeding efficiency of roughage.A versatile method is reported for the manufacturing of antimicrobial (AM) surgery equipment utilising fused deposition modelling (FDM), three-dimensional (3D) printing and sonochemistry thin-film deposition technology. A surgical retractor was replicated from a commercial polylactic acid (PLA) thermoplastic filament, while a thin layer of silver (Ag) nanoparticles (NPs) was developed via a simple and scalable sonochemical deposition method. The PLA retractor covered with Ag NPs (PLA@Ag) exhibited vigorous AM properties examined by a reduction in Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) bacteria viability (%) experiments at 30, 60 and 120 min duration of contact (p less then 0.05). Scanning electron microscopy (SEM) showed the surface morphology of bare PLA and PLA@Ag retractor, revealing a homogeneous and full surface coverage of Ag NPs. X-Ray diffraction (XRD) analysis indicated the crystallinity of Ag nanocoating. Ultraviolent-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM) highlighted the AgNP plasmonic optical responses and average particle size of 31.08 ± 6.68 nm. TEM images of the PLA@Ag crossection demonstrated the thickness of the deposited Ag nanolayer, as well as an observed tendency of AgNPs to penetrate though the outer surface of PLA. The combination of 3D printing and sonochemistry technology could open new avenues in the manufacturing of low-cost and on-demand antimicrobial surgery equipment.The adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or "gutless". Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells. These properties open a wide repertoire of therapeutic opportunities in the fields of gene supplementation and gene correction, which have been explored at the preclinical level over the past two decades. During this time, production methods have been optimized to obtain the yield, purity, and reliability required for clinical implementation. Better understanding of inflammatory responses and the implementation of methods to control them have increased the safety of these vectors. We will review the most significant achievements that are turning an interesting research tool into a sound vector platform, which could contribute to overcome current limitations in the gene therapy field.While the role of individual differences in shaping primary appraisals of psychosocial working conditions has been well investigated, less is known about how objective characteristics of the employee profile (e.g., age) are associated with different perceptions of psychosocial risk factors. Moreover, previous research on the link between employment status (i.e., work contract) and such perceptions has provided mixed results, leading to contradictory conclusions. The present study was conducted on a nationally representative sample of theItalian employed workforce surveyed with computer-assisted telephone interviewing (CATI) methodology. The principal aim of the study is to bridge this gap in the extant literature by investigating the interplay between two key characteristics of the employee profile (i.e., age and work contract) in shaping employees' perceptions of psychosocial risk factors. Given the disparate literature scenario on the interplay between age and employment status in shaping primary appraisals of psychosocial stressors, we formulated and compared multiple competitive informative hypotheses. Consistent with the principles of the conservation of resources (COR) theory, we found that older contingent employees reported a higher level of psychosocial risk than their permanent peers who, in turn, were more vulnerable than middle-aged and younger workers (regardless of their employment status). These results highlight the importance of simultaneously assessing multipleobjective variables of the employee profile (i.e., age and employment status) which may act to shape subjective perceptions of psychosocial risk factors for work-related stress. Given our findings, employers and policy makers should consider older contingent employees as one of the workforce sub-populationsmost vulnerable to negative work environments.To quantify the influence of the fuel medium on the fatigue performance of fuel tank materials, a comparative study was performed on the vibration fatigue characteristics of parent material specimens in fuel and air media. A fluid-solid coupling model was established based on the virtual mass method. Meanwhile, vibration fatigue tests of Q235BF specimens were performed in fuel and air media. The quantitative relation of the fatigue life of specimens in the air medium and that in the fuel medium was obtained. Fracture observation and energy spectrum analysis revealed the influence law of fuel on notches of specimens. The modal analysis of the finite element model proves that the stress of the specimens in the fuel medium is larger than that in the air medium. In this condition, they have shorter life. Finally, four approaches were used to calculate the fatigue life of the specimens to compare with the test life. The reasonable fatigue life prediction method was obtained in the case of fuel and air media.

Autoři článku: Ismailgaarde3445 (Roy Riggs)