Hedrickbalslev2149

Z Iurium Wiki

Verze z 7. 10. 2024, 13:11, kterou vytvořil Hedrickbalslev2149 (diskuse | příspěvky) (Založena nová stránka s textem „or the "anode-less" or "anode-free" configuration under low-pressure conditions. A perspective is provided on the potential improvement of the Li-ion trans…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

or the "anode-less" or "anode-free" configuration under low-pressure conditions. A perspective is provided on the potential improvement of the Li-ion transport, dendrite suppression, and preventing Li-metal-solid-electrolyte delamination as well as on the potential role of solid-state NMR and NDP techniques to guide these developments.Surface terminations of two-dimensional materials should have a strong influence on the nonlinear optical (NLO) properties, but the relationship between surface terminations and NLO properties has not yet been reported. In this work, switching the NLO properties of MXenes (Ti3C2Tx) via "surface terminations modulation" is explored. The surface terminations of Ti3C2Tx are modulated by electrochemical treatment, resulting in different states (viz., Ti3C2Tx(pristine), Ti3C2Tx(═O rich), and Ti3C2Tx(-OH rich)). The sign and magnitude of the effective NLO absorption coefficient (βeff) change with the surface terminations. Ti3C2Tx(═O rich) shows a relatively large saturable absorption (SA) with laser excitation at 515 nm (βeff = -1020 ± 136.2 cm GW-1), while reverse saturable absorption (RSA) is found in Ti3C2Tx(pristine) and Ti3C2Tx(-OH rich). The RSA of Ti3C2Tx(pristine) and Ti3C2Tx(-OH rich) is attributed to excited-state absorption, while the SA of Ti3C2Tx(═O rich) is associated with Pauli blocking. With laser excitation at 800 nm, the βeff of Ti3C2Tx(-OH rich) is 113 ± 3.2 cm GW-1, 1.68 times that of Ti3C2Tx(pristine); the RSA is caused by photon-induced absorption. Our results reveal a correlation between surface terminations and NLO properties, highlighting the potential of MXenes in photoelectronics.The conversion-type copper chalcogenide cathode materials hold great promise for realizing the competitive advantages of rechargeable magnesium batteries among next-generation energy storage technologies; yet, they suffer from sluggish kinetics and low redox reversibility due to large Coulombic resistance and ionic polarization of Mg2+ ions. Here we present an anionic Te-substitution strategy to promote the reversible Cu0/Cu+ redox reaction in Te-substituted CuS1-xTex nanosheet cathodes. X-ray absorption fine structure analysis demonstrates that Te dopants occupy the anionic sites of sulfur atoms and result in an improved oxidation state of the Cu species. The kinetically favored CuS1-xTex (x = 0.04) nanosheets deliver a specific capacity of 446 mAh g-1 under a 20 mA g-1 current density and a good long-life cycling stability upon 1500 repeated cycles with a capacity decay rate of 0.0345% per cycle at 1 A g-1. Furthermore, the CuS1-xTex (x = 0.04) nanosheets can also exhibit an enhanced rate capability with a reversible specific capacity of 100 mAh g-1 even under a high current density of 1 A g-1. All the obtained electrochemical characteristics of CuS1-xTex nanosheets significantly exceed those of pristine CuS nanosheets, which can contribute to the improved redox reversibility and favorable kinetics of CuS1-xTex nanosheets. Therefore, anionic Te-substitution demonstrates a route for purposeful cathode chemistry regulation in rechargeable magnesium batteries.Abnormal metabolism of cancer cells results in complex tumor microenvironments (TME), which play a dominant role in tumor metastasis. Herein, self-delivery ternary bioregulators (designated as TerBio) are constructed for photodynamic amplified immunotherapy against colorectal cancer by TME reprogramming. read more Specifically, carrier-free TerBio are prepared by the self-assembly of chlorine e6, SB505124 (SB), and lonidamine (Lon), which exhibit improved tumor accumulation, tumor penetration, and cellular uptake behaviors. Interestingly, TerBio-mediated photodynamic therapy (PDT) could not only inhibit the primary tumor growth but also induce immunogenic cell death of tumors to activate the cascade immune response. Furthermore, TerBio are capable of TME reprograming by SB-triggered transforming growth factor (TGF)-β blockage and Lon-induced lactic acid efflux inhibition. As a consequence, TerBio significantly suppresses distant and metastatic tumor growth by PDT-amplified immunotherapy. This study might advance the development of self-delivery nanomedicine against malignant tumor growth and metastasis.The RNA-binding protein IGF2BP2/IMP2/VICKZ2/p62 is overexpressed in several tumor entities, promotes tumorigenesis and tumor progression, and has been suggested to worsen the disease outcome. The aim of this study is to (I) validate IMP2 as a potential target for colorectal cancer, (II) set up a screening assay for small-molecule inhibitors of IMP2, and (III) test the biological activity of the obtained hit compounds. Analyses of colorectal and liver cancer gene expression data showed reduced survival in patients with a high IMP2 expression and in patients with a higher IMP2 expression in advanced tumors. In vitro target validation in 2D and 3D cell cultures demonstrated a reduction in cell viability, migration, and proliferation in IMP2 knockout cells. Also, xenotransplant tumor cell growth in vivo was significantly reduced in IMP2 knockouts. Different compound libraries were screened for IMP2 inhibitors using a fluorescence polarization assay, and the results were confirmed by the thermal shift assay and saturation-transfer difference NMR. Ten compounds, which belong to two classes, that is, benzamidobenzoic acid class and ureidothiophene class, were validated in vitro and showed a biological target specificity. The three most active compounds were also tested in vivo and exhibited reduced tumor xenograft growth in zebrafish embryos. In conclusion, our findings support that IMP2 represents a druggable target to reduce tumor cell proliferation.Plasmonic nanomaterials with strong absorption at near-infrared frequencies are promising photothermal therapy agents (PTAs). The pursuit of high photothermal conversion efficiency has been the central focus of this research field. Here, we report the development of plasmonic nanoparticle clusters (PNCs) as highly efficient PTAs and provide a semiquantitative approach for calculating their resonant frequency and absorption efficiency by combining the effective medium approximation (EMA) theory and full-wave electrodynamic simulations. Guided by the theoretical prediction, we further develop a universal strategy of space-confined seeded growth to prepare various PNCs. Under optimized growth conditions, we achieve a record photothermal conversion efficiency of up to ∼84% for gold-based PNCs, which is attributed to the collective plasmon-coupling-induced near-unity absorption efficiency. We further demonstrate the extraordinary photothermal therapy performance of the optimized PNCs in in vivo application. Our work demonstrates the high feasibility and efficacy of PNCs as nanoscale PTAs.Sustainable strategies for the management of iron deficiency in agriculture are warranted because of the low use efficiency of commercial iron fertilizer, which confounds global food security and induces negative environmental consequences. The impact of foliar application of differently sized γ-Fe2O3 nanomaterials (NMs, 4-15, 8-30, and 40-215 nm) on the growth and physiology of soybean seedlings was investigated at different concentrations (10-100 mg/L). Importantly, the beneficial effects on soybean were size- and concentration-dependent. Foliar application with the smallest size γ-Fe2O3 NMs (S-Fe2O3 NMs, 4-15 nm, 30 mg/L) yielded the greatest growth promotion, significantly increasing the shoot and nodule biomass by 55.4 and 99.0%, respectively, which is 2.0- and 2.6-fold greater than the commercially available iron fertilizer (EDTA-Fe) with equivalent molar Fe. In addition, S-Fe2O3 NMs significantly enhanced soybean nitrogen fixation by 13.2% beyond that of EDTA-Fe. Mechanistically, transcriptomic and metabolomic analyses revealed that (1) S-Fe2O3 NMs increased carbon assimilation in nodules to supply more energy for nitrogen fixation; (2) S-Fe2O3 NMs activated the antioxidative system in nodules, with subsequent elimination of excess reactive oxygen species; (3) S-Fe2O3 NMs up-regulated the synthesis of cytokinin and down-regulated ethylene and jasmonic acid content in nodules, promoting nodule development and delaying nodule senescence. S-Fe2O3 NMs also improved 13.7% of the soybean yield and promoted the nutritional quality (e.g., free amino acid content) of the seeds as compared with EDTA-Fe with an equivalent Fe dose. Our findings demonstrate the significant potential of γ-Fe2O3 NMs as a high-efficiency and sustainable crop fertilizer strategy.Water pollution presents a significant environmental concern on earth. Herein, due to the serious environmental harmfulness of arsenate [As(V)], an iron phthalocyanine (FePc)-induced switchable photocurrent-polarity platform was developed for highly selective assay of As(V). First, magnetic Co3O4-Fe3O4 cubes were obtained by calcination of the CoFe Prussian blue analogue and then functionalized with oligonucleotide (S1). In the presence of As(V), S1 could be released based on the stronger affinity between As(V) and Co3O4-Fe3O4 cubes. After magnetic separation by Co3O4-Fe3O4 cubes, the released S1 was used to trigger the catalytic hairpin assembly (CHA) and hybridization chain reaction, resulting in the formation of lots of G-quadruplex structures on the AgInS2/ITO electrode. Then, the capture of FePc by the G-quadruplex led to the switch of the photocurrent polarity of the AgInS2/ITO electrode from the anode to the cathode. Thus, As(V) was sensitively assayed with a low detection limit of 1.0 nM and a wide linear response range from 10 nM to 200 μM. This meets the detection requirement of the World Health Organization for the arsenic concentration in drinking water [less than 10 μg L-1 (130 nM)]. In addition, whether it was cationic or anionic interferents except phosphate (PO43-), only As(V) could generate the cathodic photocurrent, effectively avoiding the false-positive or false-negative results during As(V) assay. Interestingly, As(V) was also simultaneously separated from the detection system by Co3O4-Fe3O4 magnetic cubes. The proposed photoelectrochemical platform may have a great potential application for the selective detection of As(V) in environmental fields.The development of nanomedicine formulations to overcome the disadvantages of traditional chemotherapeutic drugs and integrate cooperative theranostic modes still remains challenging. Herein, we report the facile construction of a multifunctional theranostic nanoplatform based on doxorubicin (DOX)-loaded tannic acid (TA)-iron (Fe) networks (for short, TAF) coated with fibronectin (FN) for combination tumor chemo-/chemodynamic/immune therapy under the guidance of magnetic resonance (MR) imaging. We show that the DOX-TAF@FN nanocomplexes created through in situ coordination of TA and Fe(III) and physical coating with FN have a mean particle size of 45.0 nm, are stable, and can release both DOX and Fe in a pH-dependent manner. Due to the coexistence of the TAF network and DOX, significant immunogenic cell death can be caused through enhanced ferroptosis of cancer cells via cooperative Fe-based chemodynamic therapy and DOX chemotherapy. Through further treatment with programmed cell death ligand 1 antibody for an immune checkpoint blockade, the tumor treatment efficacy and the associated immune response can be further enhanced.

Autoři článku: Hedrickbalslev2149 (Sommer Adcock)