Munkdamborg0163

Z Iurium Wiki

Verze z 7. 10. 2024, 12:59, kterou vytvořil Munkdamborg0163 (diskuse | příspěvky) (Založena nová stránka s textem „Nevertheless, this ratio can be increased up to 77% by depositing a thicker absorber metal with smaller sheet resistance, such as Rs=100Ω/□ while still…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Nevertheless, this ratio can be increased up to 77% by depositing a thicker absorber metal with smaller sheet resistance, such as Rs=100Ω/□ while still maintaining an average absorption performance of 93%, which are all predicted numerically by simulations and physically explained through effective medium approach (EMA).A stable frequency downlink transmission scheme, which delivers the frequency signal back to the central station from an arbitrary injection point along a radio-over-fiber (RoF) loop link, is proposed and demonstrated. The frequency signal at the arbitrary remote point is injected into the RoF loop link in both clockwise and counter-clockwise directions, simultaneously. The phase variation induced by the fiber loop link is obtained in real time with the help of a round-trip assistant frequency signal. The phase error can be exactly cancelled by a series of frequency mixing (i.e., up-conversion and down-conversion) among the signals. In the experiment, a 1.21-GHz frequency signal at an arbitrary remote point is downlink transferred to the central station in a 45-km fiber loop link. The result shows the overlapping Allan deviation (ADEV) of 1.04×10-12 at 0.1 s, 1.3×10-13 at 1 s and 1.1×10-15 at 104 s, respectively. The phase error correction operates entirely at the central station, leaving a simple and robust configuration of the remote site. No active adjusting part is integrated, and the all-passive compensation achieves an endless phase error correction range, as well as quick response to fiber delay changes.We demonstrated stochastic switching in a bistable system implemented with the Rydberg atomic ensemble, which is realized by cascaded Rydberg excitation in a cesium vapor cell. Measurement of Rydberg state's population by means of the electromagnetically induced transparency allows us to investigate the nonlinear behavior in Rydberg atomic ensemble experimentally. The transition between the two states of the bistable system is driven by the intensity noise of the laser beams. Rydberg atomic ensemble accumulates energy in an equilibrium situation and brings the nonlinear system across the threshold, where stochastic switching occurs between the two states.We explore the tilted-pulse-front excitation technique to control the superradiant emission of terahertz (THz) pulses from large-area photonconductive semiconductor switches. Two cases are studied. First, a photoconductive antenna emitting into free space, where the propagation direction of the optically generated THz beam is controlled by the choice of the tilt angle of the pump pulse front. Second, a THz waveguide structure with an integrated photoconductive window for the generation of THz radiation, where the injection of the THz radiation into a waveguide mode is optimized by the pulse front tilt. By providing long interaction lengths, such a waveguide-based optical-pump/THz-probe set-up may provide a new platform for the study of diverse short-lived optically induced excitations.Recently, the miniature spectrometer based on the optical filter array has received much attention due to its versatility. Among many open challenges, designing efficient and stable algorithms to recover the input spectrum from the raw measurements is the key to success. Of many existing spectrum reconstruction algorithms, regularization-based algorithms have emerged as practical approaches to the spectrum reconstruction problem, but the reconstruction is still challenging due to ill-posedness of the problem. To alleviate this issue, we propose a novel reconstruction method based on a solver-informed neural network (NN). This approach consists of two components (1) an existing spectrum reconstruction solver to extract the spectral feature from the raw measurements (2) a multilayer perceptron to build a map from the input feature to the spectrum. We investigate the reconstruction performance of the proposed method on a synthetic dataset and a real dataset collected by the colloidal quantum dot (CQD) spectrometer. The results demonstrate the reconstruction accuracy and robustness of the solver-informed NN. In conclusion, the proposed reconstruction method shows excellent potential for spectral recovery of filter-based miniature spectrometers.We present a compact on-chip resonator enhanced silicon metal-semiconductor-metal (MSM) photodetector in 850 nm wavelength band for communication and lab-on-chip bio-sensing applications. We report the highest responsivity of 0.81 A/W for a 5 µm long device. High responsivity is achieved by integrating the detector in a silicon nitride ring resonator. The resonance offers 100X responsivity improvement over a single-pass photodetector due to cavity enhancement. We also present a detailed study of the high-speed response of the cavity and single-pass detector. We report an electro-optic bandwidth of 7.5 GHz measured using a femtosecond optical excitation. To the best of our knowledge, we report for the first time silicon nitride resonator integrated Si-MSM detector in SiN-SOI platform.Light field cameras have been employed in myriad applications thanks to their 3D imaging capability. By placing a microlens array in front of a conventional camera, one can measure both the spatial and angular information of incoming light rays and reconstruct a depth map. check details The unique optical architecture of light field cameras poses new challenges on controlling aberrations and vignetting in lens design process. The results of our study show that field curvature can be numerically corrected for by digital refocusing, and vignetting must be minimized because it reduces the depth reconstruction accuracy. To address this unmet need, we herein present an optical design pipeline for light field cameras and demonstrated its implementation in a light field endoscope.Replacing part of a conventional optical circuit with a topological photonic system allows for various controls of optical vortices in the optical circuit. As an underlying technology for this, in this study, we have realized a topological converter that provides high coupling efficiency between a normal silicon wire waveguide and a topological edge waveguide. After expanding the waveguide width while maintaining single-mode transmission from the Si wire waveguide, the waveguides are gradually narrowed from both sides by using a structure in which nanoholes with C6 symmetry are arranged in a honeycomb lattice. On the basis of the analysis using the three-dimensional finite-difference time-domain method, we actually fabricated a device in which a Si wire waveguide and a topological edge waveguide were connected via the proposed topological converter and evaluated its transmission characteristics. The resulting coupling efficiency between the Si wire waveguide and the topological edge waveguide through the converter was -4.

Autoři článku: Munkdamborg0163 (Atkinson Lysgaard)