Meyerriis2819

Z Iurium Wiki

Verze z 7. 10. 2024, 12:20, kterou vytvořil Meyerriis2819 (diskuse | příspěvky) (Založena nová stránka s textem „The use of the phosphonate motif featuring a carbon-phosphorous bond as bioisosteric replacement of the labile P-O bond is widely recognized as an attracti…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The use of the phosphonate motif featuring a carbon-phosphorous bond as bioisosteric replacement of the labile P-O bond is widely recognized as an attractive structural concept in different areas of medicinal chemistry, since it addresses the very fundamental principles of enzymatic stability and minimized metabolic activation. This review discusses the most influential successes in drug design with special emphasis on nucleoside phosphonates and their prodrugs as antiviral and cancer treatment agents. A description of structurally related analogs able to interfere with the transmission of other infectious diseases caused by pathogens like bacteria and parasites will then follow. Finally, molecules acting as agonists/antagonists of P2X and P2Y receptors along with nucleotidase inhibitors will also be covered. This review aims to guide readers through the fundamentals of nucleoside phosphonate therapeutics in order to inspire the future design of molecules to target infections that are refractory to currently available therapeutic options.Due to their single-crystalline structures, comparatively large aspect ratios, tight optical confinement and smooth surfaces, nanowires have increasingly attracted research interests for both fundamental studies and technological applications in on-chip photonic devices. This class of nanostructures typically have cross-sections of 2~200 nm and lengths upwards of several micrometers, allowing for the bridging of the nanoscopic and macroscopic world. In particular, the lasing behaviors can be established from a nanowire resonator with positive feedback via end-facet reflection, making the nanowire a promising candidate in the next generation of optoelectronics. Consequently, versatile nanowire-based devices ranging from nanoscale coherent lasers, optical sensors, waveguides, optical switching, and photonic networks have been proposed and experimentally demonstrated in the past decade. In this article, significant progresses in the nanowire fabrication, lasers, circuits, and devices are reviewed. First, we focus on the achievements of nanowire synthesis and introduce the basics of nanowire optics. TPH104m purchase Following the cavity configurations and mode categories, then the different light sources consisting of nanowires are presented. Next, we review the recent progress and current status of functional nanowire devices. Finally, we offer our perspective of nanowires regarding their challenges and future opportunities in photonic circuits.Phosphonates and bisphosphonates have proven their pharmacological utility as inhibitors of enzymes that metabolize phosphate and pyrophosphate substrates. The blockbuster class of drugs nitrogen-containing bisphosphonates represent one of the best-known examples. Widely used to treat bone-resorption disorders, these drugs work by inhibiting the enzyme farnesyl pyrophosphate synthase. Playing a key role in the isoprenoid biosynthetic pathway, this enzyme is also a potential anticancer target. Here, we provide a comprehensive overview of the research efforts to identify new inhibitors of farnesyl pyrophosphate synthase for various therapeutic applications. While the majority of these efforts have been directed against the human enzyme, some have been targeted on its homologs from other organisms, such as protozoan parasites and insects. Our particular focus is on the structures of the target enzymes and how the structural information has guided the drug discovery efforts.The development of drug carriers based in lipid nanoparticles (LNPs) aims toward the synthesis of non-toxic multifunctional nanovehicles that can bypass the immune system and allow specific site targeting, controlled release and complete degradation of the carrier components. Among label free techniques, Surface Plasmon Resonance (SPR) biosensing is a versatile tool to study LNPs in the field of nanotherapeutics research. SPR, widely used for the analysis of molecular interactions, is based on the immobilization of one of the interacting partners to the sensor surface, which can be easily achieved in the case of LNPs by hydrophobic attachment onto commercial lipid- capture sensor chips. In the last years SPR technology has emerged as an interesting strategy for studying molecular aspects of drug delivery that determines the efficacy of the nanotherapeutical such as LNPs' interactions with biological targets, with serum proteins and with tumor extracelullar matrix. Moreover, SPR has contributed to the obtention and characterization of LNPs, gathering information about the interplay between components of the formulations, their response to organic molecules and, more recently, the quantification and molecular characterization of exosomes. By the combination of available sensor platforms, assay quickness and straight forward platform adaptation for new carrier systems, SPR is becoming a high throughput technique for LNPs' characterization and analysis.A class of phosphane gold(I) compounds, made of azoles and phosphane ligands, was evaluated for a screening on the regards of Breast Cancer cell panels (BC). The compounds possess N-Au-P or Cl-Au-P bonds around the central metal, and they differ for the presence of aprotic or protic polar groups in the azoles and/or the phosphane moieties to tune their hydrophilicity. Among the six candidates, only the compounds having the P-Au-N environment and not displaying neither the hydroxyl nor carboxyl groups in the ligands were found active. The compounds were screened by MTT tests in SKBR3, A17, and MDA-MB231 cancer cells, and two compounds (namely the 4,5-dicyano-imidazolate-1yl-gold(I)-(triphenylphosphane, 5, and 4,5-dichloro-imidazolate-1yl-gold(I)-triphenylphosphane, 6) were found very cytotoxic, with the most active with an IC50 value of 3.46 μM in MDA-MB231 cells. By performing enzymatic assays in the treated cells lysates, the residual enzymatic activity of dihydrofolate reductase (DHFR) has been measured after cell treatment for 4 or 12 h in comparison with control cells. Upon 12 h of treatment, the activity of DHFR was significantly reduced in both SKBR3 and A17 cells by compounds 5 and 6, but not in human MDA-MB231 cells; interestingly, it was found remarkably high after 4 h of treatment, revealing a time dependence for the DHFR enzymatic assays. The DHFR inhibition data have been compared to those for the thioredoxin reductase (TrxR), the most recognized molecular target for gold compounds. For this latter, similar residual activities (i.e., 37 and 49% for the match of SKBR3 cells and compound 5 or 6, respectively) were found. Binding studies on the regards of ct-DNA (calf-thymus-DNA) and of plasma transporters proteins, such as BSA (bovine serum albumin) and ATF (apo transferrin), were performed. As expected for gold compounds, the data support strong binding to proteins (Ksv values range 1.51 ÷ 2.46 × 104 M-1) and a weaker interaction with ct-DNA's minor groove (Ksv values range 1.55 ÷ 6.12 × 103 M-1).

Autoři článku: Meyerriis2819 (Leslie Burke)