Hammerross1691

Z Iurium Wiki

Verze z 6. 10. 2024, 20:24, kterou vytvořil Hammerross1691 (diskuse | příspěvky) (Založena nová stránka s textem „5 mg/L the abundance of Nitrospira was stable and AOB was always kept at 1010.7 copies/g DNA. High AOR was maintained, and stable partial nitrificatio…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

5 mg/L the abundance of Nitrospira was stable and AOB was always kept at 1010.7 copies/g DNA. High AOR was maintained, and stable partial nitrification process was kept. Ammonia oxidizing bacteria (AOB) activity was significantly higher than nitrite oxidizing bacteria (NOB) activity at DO of 2.5 mg/L, which was crucial to maintain excellent nitrite accumulation performance. V.Nitrogen in pond sediments is a major water quality concern and can impact the productivity of aquaculture. Dissolved oxygen is an important factor for improving water quality and boosting fish growth in aquaculture ponds, and plays an important role in the conversion of ammonium-nitrogen (NH4+-N) to nitrite-nitrogen (NO2--N) and eventually nitrate-nitrogen (NO3--N). A central goal of the study was to identify the best aeration method and strategy for improving water quality in aquaculture ponds. We conducted an experiment with six tanks, each with a different aeration mode to simulate the behavior of aquaculture ponds. The results show that a 36 hr aeration interval (Tc = 36 hr 36 hr) and no aeration resulted in high concentrations of NH4+-N in the water column. Using a 12 hr interval time (Tc = 12 hr 12 hr) resulted in higher NO2--N and NO3--N concentrations than any other aeration mode. Results from an 8 hr interval time (Tc = 8 hr 8 hr) and 24 hr interval time (Tc = 24 hr 24 hr) were comparable with those of continuous aeration, and had the benefit of being in use for only half of the time, consequently reducing energy consumption. V.Bauxite residue is the industrial waste generated from alumina production and commonly deposited in impoundments. These sites are bare of vegetation due to the extreme high salinity and alkalinity, as well as lack of nutrients. However, long term weathering processes could improve residue properties to support the plant establishment. Here we investigate the development of bacterial communities and the geochemical drivers in bauxite residue, using Illumina high-throughput sequencing technology. Long term weathering reduced the pH in bauxite residue and increased its nutrients content. The bacterial community also significantly developed during long term weathering processes. Taxonomic analysis revealed that natural weathering processes encouraged the populations of Proteobacteria, Chloroflexi, Acidobacteria and Planctomycetes, whereas reducing the populations of Firmicutes and Actinobacteria. Redundancy analysis (RDA) indicated that total organic carbon (TOC) was the dominant factors affecting microbial structure. The results have demonstrated that natural weathering processes improved the soil development on the abandoned bauxite residue disposal areas, which also increased our understanding of the correlation between microbial variation and residue properties during natural weathering processes in Bauxite residue disposal areas. V.Simulated photo-degradation of fluorescent dissolved organic matter (FDOM) in Lake Baihua (BH) and Lake Hongfeng (HF) was investigated with three-dimensional excitation-emission matrix (3DEEM) fluorescence combined with the fluorescence regional integration (FRI), parallel factor (PARAFAC) analysis, and multi-order kinetic models. In the FRI analysis, fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM. Four individual components were identified by use of PARAFAC analysis as humic-like components (C1), fulvic-like components (C2), protein-like components (C3) and unidentified components (C4). The maximum 3DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%, 70% and 90%, respectively after photo-degradation. The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient (Radj2) (0.963-0.998). BMS202 The photo-degradation rate constants (kn) showed differences of three orders of magnitude, from 1.09 × 10-6 to 4.02 × 10-4 min-1, and half-life of multi-order model ( T1/2n) ranged from 5.26 to 64.01 min. The decreased values of fluorescence index (FI) and biogenic index (BI), the fact that of percent fluorescence response parameter of Region I (PI,n) showed the greatest change ratio, followed by percent fluorescence response parameter of Region II (PII,n), while the largest decrease ratio was found for C3 components, and the lowest T1/2n was observed for C3, indicated preferential degradation of protein-like materials/components derived from biological sources during photo-degradation. This research on the degradation of FDOM by 3DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FDOM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM. V.Increasing energy consumption in the transportation sector results in challenging greenhouse gas (GHG) emissions and environmental problems. This paper involved integrated assessments on GHG emissions and emergy of the life cycle for the internal combustion engine (ICE) and electric automobiles in the USA over the entire assumed fifteen-year lifetime. The hotspots of GHG emissions as well as emergy indices for the major processes of automobile life cycle within the defined system boundaries have been investigated. The potential strategies for reducing GHG emissions and emergy in the life cycle of both ICE and electric automobiles were further proposed. Based on the current results, the total GHG emissions from the life cycle of ICE automobiles are 4.48E + 07 kg CO2-e which is 320 times higher than that of the electric automobiles. The hotspot area of the GHG emissions from ICE and electric automobiles are operation phase and manufacturing process, respectively. Interesting results were observed that comparable total emergy of the ICE automobiles and electric automobiles have been calculated which were 1.54E + 17 and 2.20E + 17 sej, respectively. Analysis on emergy index evidenced a better environmental sustainability of electric automobiles than ICE automobiles over the life cycle due to its higher ESI. To the authors' knowledge, it is the first time to integrate the analysis of GHG emissions together with emergy in industrial area of automobile engineering. It is expected that the integration of emergy and GHG emissions analysis may provide a comprehensive perspective on eco-industrial sustainability of automobile engineering. V.

Autoři článku: Hammerross1691 (Wiggins Clausen)