Brodersenfitzsimmons6374

Z Iurium Wiki

Verze z 6. 10. 2024, 17:53, kterou vytvořil Brodersenfitzsimmons6374 (diskuse | příspěvky) (Založena nová stránka s textem „The results show that compared with the CEL model and the ALE coupling model, the SPH-FEM coupling model can better simulate the damage features of PU-RCS,…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The results show that compared with the CEL model and the ALE coupling model, the SPH-FEM coupling model can better simulate the damage features of PU-RCS, such as the cracks on the bottom surface of the RC slab and the large deformation failure state of polyurethane sacrificial cladding, while the CEL model and the ALE coupling model can simulate the propagation process of shock waves and have a lower computational cost. In conclusion, the SPH-FEM coupling method is the most applicable method for exploring the blast damage features of PU-RCS in this study.Biopolymers-based composite edible films are gaining interest in the food packaging industry due to their sustainable nature and diverse biological activities. In the current study, we used sodium alginate (SA) and casein (CA) for the fabrication of composite film using the casting method. We also added orange oil to the edible film and assessed its impact on the biological, chemical, physical, and barrier properties of the films. The fabricated films were analyzed using X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). It was observed that CA-SA films loaded with 1.5% OEO had better visual attributes, and a further increase in oil concentration was not found to be as favorable. Mechanical assessment of the films revealed that CA-SA-OEO (1.5%) film showed lower puncture deformation and higher puncture force values. XRD data showed that all samples exhibited peaks at similar positions (21° of 2θ) with different intensities. In FTIR analysis, characteristic peaks of the film components (sodium alginate, casein, and orange oil) were reported at corresponding positions. The thermal stability of films was enhanced after the addition of the OEO (1.5%), however, a greater increase in OEO caused a decrease in the thermal stability, observed during TGA analysis. Moreover, the surface of the blank CA-SA film (FL1) was found to be rough (with cracks) compared to CA-SA films (FL2) containing 1.5% OEO. Additionally, FL2 was found to be relatively better than the other samples in terms of swelling degree (SD), thickness, water solubility (WS), oxygen permeability (OP), water vapor permeability (WVP), moisture content (MC), and transparency (T).Uniformly distributed silica/epoxy nanocomposites (2 and 6 wt.% silica content) were obtained through a "solvent-free one-pot" process. The inorganic phases were obtained through "in situ" sol-gel chemistry from two precursors, tetraethyl orthosilicate (TEOS) and (3-aminopropyl)-triethoxysilane (APTES). APTES acts as a coupling agent. Surprisingly when changing TEOS/APTES molar ratio (from 2.32 to 1.25), two opposite trends of glass transformation temperature (Tg) were observed for silica loading, i.e., at lower content, a decreased Tg (for 2 wt.% silica) and at higher content an increased Tg (for 6 wt.% silica) was observed. High-Resolution Transmission Electron Microscopy (HRTEM) showed the formation of multi-sheet silica-based nanoparticles with decreasing size at a lower TEOS/APTES molar ratio. Based on a recently proposed mechanism, the experimental results can be explained by the formation of a co-continuous hybrid network due to reorganization of the epoxy matrix around two different "in situ" sol-gel derived silicatic phases, i.e., micelles formed mainly by APTES and multi-sheet silica nanoparticles. Moreover, the concentration of APTES affected the size distribution of the multi-sheet silica-based nanoparticles, leading to the formation of structures that became smaller at a higher content. Flammability and forced-combustion tests proved that the nanocomposites exhibited excellent fire retardancy.Osteoporotic vertebral compression fractures are a global issue affecting the elderly population. To explore a new calcium silicate bone cement, polylactic acid (PLGA)-polyethylene glycol (PEG)-PLGA hydrogel was compounded with tricalcium silicate (C3S)/dicalcium silicate (C2S)/plaster of Paris (POP) to observe the hydration products and test physical and chemical properties. The cell compatibility and osteogenic capability were tested in vitro. The rabbit femoral condylar bone defect model was used to test its safety and effectiveness in vivo. The addition of hydrogel did not result in the formation of a new hydration product and significantly improved the injectability, anti-washout properties, and in vitro degradability of the bone cement. The cholecystokinin octapeptide-8 method showed significant proliferation of osteoblasts in bone cement. The Alizarin red staining and alkaline phosphatase activity test showed that the bone cement had a superior osteogenic property in vitro. The computed tomography scan and gross anatomy at 12 weeks after surgery in the rabbit revealed that PLGA-PEG-PLGA/C3S/C2S/POP was mostly degraded, with the formation of new bone trabeculae and calli at the external orifice of the defect. Thus, PLGA-PEG-PLGA/C3S/C2S/POP composite bone cement has a positive effect on bone repair and provides a new strategy for the clinical application of bone tissue engineering materials.The search for polymers that meet the demands of the water recovery process in mining is a contingent challenge. Both the presence of clays and saline waters can impair water recovery from tailings when conventional flocculants are used. In this work, the adsorption of polyacrylamide (PAM), hydrolyzed polyacrylamide (HPAM), poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS), polyacrylic acid (PAA), polyethylene oxide (PEO), and guar gum (GUAR) on a kaolinite surface (010) was investigated using classical molecular dynamics. The results show that the presence of sodium chloride modifies the affinities of the polymers with kaolinite (010). At low salt concentrations, the PAM and GUAR polymers generally show higher adsorption due to the formation of hydrogen bridges. However, the highest adsorptions occur in salt solutions in the presence of HPAM by cationic bridging with sodium ions as a mediator. This high affinity of HPAM is not efficient for flocculation because it re-disperses the particles, but it is promising for the design of new additives produced by grafting HPAM groups onto advanced polymers.Polymer-based conductive membranes play an important role in the development of elastic deflection-based pressure sensors. In this paper, an analytical solution-based method is presented for the design and numerical calibration of polymer conductive membrane-based circular capacitive pressure sensors from non-touch mode of operation to touch mode of operation. The contact problem of a circular membrane in frictionless contact with a rigid flat plate under pressure is analytically solved, and its analytical solution is used for the design of touch mode circular capacitive pressure sensors for the first time. The analytical relationship with input pressure as independent variable and output capacitance as dependent variable is precisely derived and is used for the numerical calibrations of the analytical relationships with input capacitance as the independent variable and output pressure as the dependent variable in order to meet the capacitive pressure sensor mechanism of detecting pressure by measuring capacitance. For the first time, an example showing the design and numerical calibration of a given (given design parameters) polymer conductive membrane-based circular capacitive pressure sensor from non-touch mode of operation to touch mode of operation is provided. Then, the influence of changing several important design parameters on input capacitance-output pressure relationships is comprehensively investigated in order to clarify the desired input-output relationships when changing design parameters.The use of biopolymers for tissue engineering has recently gained attention due to the need for safer and highly compatible materials. Starch is one of the most used biopolymers for membrane preparation. However, incorporating other polymers into starch membranes introduces improvements, such as better thermal and mechanical resistance and increased water affinity, as we reported in our previous work. There are few reports in the literature on the biocompatibility of starch/chicken gelatin composites. We assessed the in vivo biocompatibility of the five composites (T1-T5) cassava starch/gelatin membranes with subdermal implantations in biomodels at 30, 60, and 90 days. The FT-IR spectroscopy analysis demonstrated the main functional groups for starch and chicken gelatin. At the same time, the thermal study exhibited an increase in thermal resistance for T3 and T4, with a remaining mass (~15 wt.%) at 800 °C. The microstructure analysis for the T2-T4 demonstrated evident roughness changes with porosity presence due to starch and gelatin mixture. MSDC0160 The decrease in the starch content in the composites also decreased the gelatinization heats for T3 and T4 (195.67, 196.40 J/g, respectively). Finally, the implantation results demonstrated that the formulations exhibited differences in the degradation and resorption capacities according to the starch content, which is easily degraded by amylases. However, the histological results showed that the samples demonstrated almost complete reabsorption without a severe immune response, indicating a high in vivo biocompatibility. These results show that the cassava starch/chicken gelatin composites are promising membrane materials for tissue engineering applications.To reduce the cost of high-viscosity modifier (HVM) and alleviate white pollution problems, we prepared the environment-friendly HVM (E-HVM) by using waste-low density polyethylene/styrene-butadiene-styrene (waste-LDPE/SBS) composite. The physical characteristics of the E-HVM modifier were first investigated. Additionally, the effects of E-HVM modifier dosage (8 wt% to 20 wt%) on the rheological properties and microstructure of asphalt were, respectively, researched by dynamic shear rheometer (DSR), bending beam rheometer (BBR), and fluorescence microscopy (FM). The results show that the E-HVM modifier has lower molecular weight, and its distribution is wider than that of the Tafpack-Super (TPS) modifier; thus, the E-HVM modifier had better compatibility with asphalt, which has also been proven by FM images. Due to these reasons, the E-HVM modifier improves the high-temperature performances of asphalt more effectively than the TPS modifier, which is shown by the higher dynamic viscosity (60 °C) and G* and the lower δ and Jnr(τ) Furthermore, compared to TPS modified asphalt, E-HVM modified asphalt also has a higher fatigue life at different strain levels (2.5% and 5.0%), but worse low-temperature performance. Following a comprehensive consideration of performances, the reasonable dosage range of E-HVM modifier is 12 wt% to 16 wt%.Alginates are the most widely used natural polymers in the pharmaceutical, food and cosmetic industries. Usually, they are applied as a thickening, gel-forming and stabilizing agent. Moreover, the alginate-based formulations such as matrices, membranes, nanospheres or microcapsules are often used as delivery systems. Alginate microparticles (AMP) are biocompatible, biodegradable and nontoxic carriers, applied to encapsulate hydrophilic active substances, including probiotics. Here, we report the methods most frequently used for AMP production and encapsulation of different actives. The technological parameters important in the process of AMP preparation, such as alginate concentration, the type and concentration of other reagents (cross-linking agents, oils, emulsifiers and pH regulators), agitation speed or cross-linking time, are reviewed. Furthermore, the advantages and disadvantages of alginate microparticles as delivery systems are discussed, and an overview of the active ingredients enclosed in the alginate carriers are presented.

Autoři článku: Brodersenfitzsimmons6374 (Clausen Sexton)