Noonansnedker5435

Z Iurium Wiki

Verze z 5. 10. 2024, 18:05, kterou vytvořil Noonansnedker5435 (diskuse | příspěvky) (Založena nová stránka s textem „Pinpointing environmental antibiotic resistance (AR) hot spots in low-and middle-income countries (LMICs) is hindered by a lack of available and comparable…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Pinpointing environmental antibiotic resistance (AR) hot spots in low-and middle-income countries (LMICs) is hindered by a lack of available and comparable AR monitoring data relevant to such settings. Addressing this problem, we performed a comprehensive spatial and seasonal assessment of water quality and AR conditions in a Malaysian river catchment to identify potential "simple" surrogates that mirror elevated AR. We screened for resistant coliforms, 22 antibiotics, 287 AR genes and integrons, and routine water quality parameters, covering absolute concentrations and mass loadings. To understand relationships, we introduced standardized "effect sizes" (Cohen's D) for AR monitoring to improve comparability of field studies. Overall, water quality generally declined and environmental AR levels increased as one moved down the catchment without major seasonal variations, except total antibiotic concentrations that were higher in the dry season (Cohen's D > 0.8, P less then 0.05). Among simple surrogates, dissolved oxygen (DO) most strongly correlated (inversely) with total AR gene concentrations (Spearman's ρ 0.81, P less then 0.05). We suspect this results from minimally treated sewage inputs, which also contain AR bacteria and genes, depleting DO in the most impacted reaches. Thus, although DO is not a measure of AR, lower DO levels reflect wastewater inputs, flagging possible AR hot spots. DO measurement is inexpensive, already monitored in many catchments, and exists in many numerical water quality models (e.g., oxygen sag curves). Therefore, we propose combining DO data and prospective modeling to guide local interventions, especially in LMIC rivers with limited data.ZnO is a promising candidate for use as an environmentally friendly thermoelectric (TE) material. However, high thermal conductivity leading to a poor TE figure-of-merit (zT) needs to be addressed to achieve a significant TE efficiency for commercial applications. Here, we demonstrate that selective enhancement in phonon scattering leads to an increase in the zT of ZnO because of Al doping and reduced graphene oxide (RGO) encapsulation. These nanocomposites are synthesized via a facile and scalable method. The incorporation of 1 at% Al with 1.5 wt % RGO into ZnO has been found to show significant improvement in zT (0.52 at 1100 K), which is an order of magnitude larger compared to that of bare undoped ZnO. Photoluminescence and X-ray photoelectron spectroscopy measurements confirm that RGO encapsulation significantly quenches surface oxygen vacancies in ZnO along with nucleation of new interstitial Zn donor states. Tunneling spectroscopy performed on bare as well as composite particles reveals that the band gap of ∼3.4 eV for bare ZnO reduces effectively to ∼0.5 eV upon RGO encapsulation, facilitating charge transport. The electrical conductivity also benefits from high densification (>95%) achieved using the spark plasma sintering method, which also aids in reduction of graphene oxide into RGO. The same Al doping and RGO capping synergistically bring about drastic reduction of thermal conductivity, through enhanced interfacial and point-defect-phonon scatterings. These opposing effects on electrical and thermal conductivities lead to enhancement in the power factors as well as the zT value. Overall, a practically viable route has been demonstrated for the synthesis of oxide-RGO TE materials, which could find their potential applications in high-temperature TE power generation.Under-expression or overexpression of protein kinases has been shown to be associated with unregulated cell signal transduction in cancer cells. Therefore, there is major interest in designing protein kinase inhibitors as anticancer agents. learn more We have previously reported [WR]5, a peptide containing alternative arginine (R) and tryptophan (W) residues as a non-competitive c-Src tyrosine kinase inhibitor. A number of larger cyclic peptides containing alternative hydrophobic and positively charged residues [WR]x (x = 6-9) and hybrid cyclic-linear peptides, [R6K]W6 and [R5K]W7, containing R and W residues were evaluated for their protein kinase inhibitory potency. Among all the peptides, cyclic peptide [WR]9 was found to be the most potent tyrosine kinase inhibitor. [WR]9 showed higher inhibitory activity (IC50 = 0.21 μM) than [WR]5, [WR]6, [WR]7, and [WR]8 with IC50 values of 0.81, 0.57, 0.35, and 0.33 μM, respectively, against c-Src kinase as determined by a radioactive assay using [γ-33P]ATP. Consistent with the SH2, SH3, and N-lobe domains on the opposite side of the ATP binding site. The second putative pocket is formed by the same domains and located on the ATP binding site side of the protein. Finally, a third pocket was identified between the SH2 and SH3 domains. These results are consistent with the non-competitive nature of the inhibition displayed by these molecules. Molecular dynamics simulations of the protein-peptide complexes indicate that the presence of either [WR]5 or [WR]9 affects the plasticity of the protein and in particular the volume of the ATP binding site pocket in different ways. These results suggest that the second pocket is most likely the site where these peptides bind and offer a plausible rationale for the increased affinity of [WR]9.Van der Waals heterostructures composed of two-dimensional materials offer an unprecedented control over their properties and have attracted tremendous research interest in various optoelectronic applications. Here, we study the photoinduced charge transfer in graphene/WS2 heterostructure by time-dependent density functional theory molecular dynamics. Our results show that holes transfer from graphene to WS2 two times faster than electrons, and the occurrence of interlayer charge transfer is found correlated with vibrational modes of graphene and WS2. It is further demonstrated that the carrier dynamics can be efficiently modulated by external electric fields. Detailed analysis confirms that the carrier transfer rate at heterointerface is governed by the coupling between donor and acceptor states, which is the result of the competition between interlayer and intralayer relaxation processes. Our study provides insights into the understanding of ultrafast interlayer charge transfer processes in heterostructures and broadens their future applications in photovoltaic devices.

Autoři článku: Noonansnedker5435 (Ryan Cleveland)