Langstongroth8222

Z Iurium Wiki

Verze z 5. 10. 2024, 16:53, kterou vytvořil Langstongroth8222 (diskuse | příspěvky) (Založena nová stránka s textem „In this manuscript, a highly sensitive methane (CH4) sensor based on light-induced thermoelastic spectroscopy (LITES) using a 2.33 µm diode laser with hig…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In this manuscript, a highly sensitive methane (CH4) sensor based on light-induced thermoelastic spectroscopy (LITES) using a 2.33 µm diode laser with high power is demonstrated for the first time. A quartz tuning fork (QTF) with an intrinsic resonance frequency of 32.768 kHz was used to detect the light-induced thermoelastic signal. A Herriot multi-pass cell with an effective optical path of 10 m was adopted to increase the laser absorption. The laser wavelength modulation depth and concentration response of this CH4-LITES sensor were investigated. The sensor showed excellent long term stability when Allan deviation analysis was performed. An adaptive Savitzky-Golay (S-G) filtering algorithm with χ2 statistical criterion was firstly introduced to the LITES technique. The SNR of this CH4-LITES sensor was improved by a factor of 2.35 and the minimum detection limit (MDL) with an integration time of 0.1 s was optimized to 0.5 ppm. This reported CH4-LITES sensor with sub ppm-level detection ability is of great value in applications such as environmental monitoring and industrial safety.Waveguide based optical combiners for augmented reality (AR) glasses are integrating several surface relief gratings (SRG) whose pitch sizes can be as small as 200 nm for the blue wavelength. All SRG components exploit the first diffraction order to couple in and out or to deviate the light. We present SRG using higher diffraction orders featuring over-wavelength pitch sizes. Our gratings use the edge wave (EW) diffraction phenomenon to steer light in the preferred far field direction.This paper develops an integrative scheme combining new image acquisition, filtering and enhancement methods specified for orthogonal weld defect detection based on magneto-optical imaging (MOI) technique. For image acquisition, a controllable magnetic system enabling rotation of magnetic angles is invented to accurately collect MO images. Multiple images are acquired, yet few are utilized for further processing in the conventional method based on human subjective preferences, bearing chances that images containing defects are discarded. Therefore, we turn to an automated-filtering system to scrutinize MO images and filter effective images through Bhattacharyya coefficient screening method. This not only elevates efficiency and objectivity but also eliminates missed inspection. For image enhancement, normalization method is used to balance the image intensity, followed by image fusion and edge extraction by a two-dimensional gradient method. Our pre- and post-processing approaches significantly improve accuracy in defect recognition and precision in MO images.This article, Part II of an article series on GPU-accelerated Monte Carlo simulation of photon transport through turbid media, focuses on the validation of the online software Multi-Scattering. While Part I detailed the implementation of the computational model, simulated and experimental results are now compared for the distribution of the scattered light intensity. The scattering phantoms prepared here are aqueous dispersions of polystyrene microspheres of diameter D = 0.5, 2 and 5 μm and at various concentrations, resulting in optical depth ranging from OD = 1 to 17.5. The Lorenz-Mie scattering phase functions used in the simulations have been verified experimentally at low particle concentrations by analyzing the angular light intensity distribution at the Fourier plane of a collecting lens. The validation approach herein accounts for the specific light collection and image formation by the camera. The front and side surfaces of the medium are imaged and the corresponding light intensity distributions are compared qualitatively and quantitatively. It is concluded that the model enables reliable simulations over the tested parameters, offering predictive simulations of transmitted intensities with a mean relative error ≤~19% over the full range. The online software is available at https//multi-scattering.com/.Short-wave infrared (SWIR) imaging polarimetry has widespread applications in telecommunication, medical imaging, surveillance, remote-sensing, and industrial metrology. In this work, we design, fabricate, and test an achromatic SWIR elliptical polarizer, which is a key component of SWIR imaging polarimetry. The elliptical polarizer is made of a patterned linear polarizer and a patterned optical elliptical retarder. The linear polarizer is a wire grid polarizer. The elliptical retarder is constructed with three layers of nematic phase A-plate liquid crystal polymer (LCP) films with different fast axis orientations and physical film thicknesses. For each LCP layer, four arrays of hexagonal patterns with individual fast-axis orientations are realized utilizing selective linearly polarized ultraviolet (UV) irradiation on a photo-alignment polymer film. The Mueller matrices of the optical filters were measured in the wavelength range 1000 nm to 1600 nm and compared with theory. Our results demonstrate the functionality and quality of the patterned retarders with normalized analyzer vector parameter deviation below 7% over this wavelength range. To the best of our knowledge, this work represents the first polymer-based patterned elliptical polarizer for SWIR polarimetry imaging applications.Traditional compressive imaging reconstruction is often based on an iterative approach, which costs much time. To deal with the issue, a couple of groups have used deep learning for reconstruction to ensure low running time with good performance. However, the excessive dependence on data and network structure also creates a network with a lack of flexibility and interpretation. Such networks are often inapplicable when compression ratios are high. In order to solve these issues, we study an end-to-end network Joinput-CiNet (joint input compressive imaging net). We use a tailored encoding module to make the imaging degradation model part of the network input. Then the network can obtain prior knowledge of the imaging system, thereby improving training efficiency and reconstruction performance. With five broadly used image datasets and experimentally collected infrared (IR) measurements, Joinput-CiNet demonstrates superior reconstruction performance at low compression rates such as 116 and 164 with fast speed compared with other networks.The ultra-confined plasmon field supported by graphene provides an ideal platform for enhanced light-matter interactions and studies of fundamental physical phenomena. On the other hand, the intrinsic ultra-short plasmon wavelength obstructs in-plane detectability of plasmon behaviors, like wavelength variations induced by biomolecule or dragging current. The detection of plasmon wavefront and its spatial shift relies on scattering-type scanning near-field microscopy with a spatial resolution of 20 nm. Here we propose a configuration which can efficiently separate ultra-confined plasmon region from detection region, guaranteeing both field confinement and in-plane sensitive detection of wavelength variations. As an example, the application in detecting Fizeau drag effect is demonstrated. Our study can be applied for detecting strong light-matter interactions, including fundamental physical studies and biosensing applications.We demonstrate a rigorous multimode engineering method to achieve multifrequency superscattering with flexible controllability in a subwavelength graphene/hexagonal boron nitride (hBN) cylindrical system. Through delicately tuning the chemical potential of graphene, different resonance channels of the proposed stucture can be spectrally overlapped to construct the multiple superscattering points. Consequently, the scattering cross section is enhanced effectively and the so-called superscattering beyond the single-channel scattering limit can be attained. Numerical calculations on scattering spectra, near-field, and far-field distributions are performed to confirm the scattering enhancement. The general principles presented here may suggest an accurate and efficient approach to actively tune the light-matter interaction at the subwavelength scale.Traditionally, long wave infrared imaging has been used in photon starved conditions for object detection and classification. We investigate passive three-dimensional (3D) integral imaging (InIm) in visible spectrum for object classification using deep neural networks in photon-starved conditions and under partial occlusion. We compare the proposed passive 3D InIm operating in the visible domain with that of the long wave infrared sensing in both 2D and 3D imaging cases for object classification in degraded conditions. This comparison is based on average precision, recall, and miss rates. Our experimental results demonstrate that cold and hot object classification using 3D InIm in the visible spectrum may outperform both 2D and 3D imaging implemented in long wave infrared spectrum for photon-starved and partially occluded scenes. While these experiments are not comprehensive, they demonstrate the potential of 3D InIm in the visible spectrum for low light applications. Imaging in the visible spectrum provides higher spatial resolution, more compact optics, and lower cost hardware compared with long wave infrared imaging. In addition, higher spatial resolution obtained in the visible spectrum can improve object classification accuracy. Our experimental results provide a proof of concept for implementing visible spectrum imaging in place of the traditional LWIR spectrum imaging for certain object recognition tasks.We report the generation of tunable high-order optical vortices in the mid-infrared (mid-IR) using a picosecond optical parametric oscillator (OPO). The OPO is based on MgOPPLN as the nonlinear gain medium and synchronously pumped by a mode-locked Yb-fiber laser at 1064 nm. Using a singly-resonant oscillator configuration for the OPO, we have achieved direct transfer of pump optical vortices to the non-resonant idler beam, with the resonant signal in the Gaussian cavity mode. We demonstrate the successful transfer of pump optical vortices of order, lp = 1 to 5, to the idler beam of the same order across the mid-IR, with an output power of 630 mW to 130 mW across 2538 nm to 4035 nm for the highest idler vortex order, li = 5. To the best of our knowledge, this is the first report of an OPO pumped by a vortex beam of order as high as lp = 5 and generating idler vortices of high order in the mid-IR.We propose single-path single-shot phase-shifting digital holographic microscopy (SSP-DHM) in which the quantitative phase information of an object wave is acquired without a laser light source. Multiple phase-shifted holograms are simultaneously obtained using a linear polarizer, a liquid crystal on a silicon spatial light modulator (LCoS-SLM), and a polarization-imaging camera. find more Complex amplitude imaging of a USAF1951 test target and phase imaging of transparent HeLa cells are performed to show its quantitative phase-imaging ability. We also conduct an experiment for the motion-picture imaging of transparent particles to highlight the single-shot imaging ability of SSP-DHM.Complete absorption of electromagnetic waves is paramount in today's applications, ranging from photovoltaics to cross-talk prevention into sensitive devices. In this context, we use a genetic algorithm (GA) strategy to optimize absorption properties of periodic arrays of truncated square-based pyramids made of alternating stacks of metal/dielectric layers. We target ultra-broadband quasi-perfect absorption of normally incident electromagnetic radiations in the visible and near-infrared ranges (wavelength comprised between 420 and 1600 nm). We compare the results one can obtain by considering one, two or three stacks of either Ni, Ti, Al, Cr, Ag, Cu, Au or W for the metal, and poly(methyl methacrylate) (PMMA) for the dielectric. More than 1017 configurations of geometrical parameters are explored and reduced to a few optimal ones. This extensive study shows that Ni/PMMA, Ti/PMMA, Cr/PMMA and W/PMMA provide high-quality solutions with an integrated absorptance higher than 99% over the considered wavelength range, when considering realistic implementation of these ultra-broadband perfect electromagnetic absorbers.

Autoři článku: Langstongroth8222 (Yang Strong)