Lacroixskovbjerg0585

Z Iurium Wiki

Verze z 5. 10. 2024, 16:41, kterou vytvořil Lacroixskovbjerg0585 (diskuse | příspěvky) (Založena nová stránka s textem „Development of minimally invasive therapies for temporomandibular joint osteoarthritis (TMJOA) has focused on drug intra-articular injections to avoid the…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Development of minimally invasive therapies for temporomandibular joint osteoarthritis (TMJOA) has focused on drug intra-articular injections to avoid the systemic adverse effects experienced when these substances are administered orally. Therefore, we performed a systematic review to answer the question "Which method of induction of a TMJOA-related pain model in rats leads to prolonged painful symptoms, allowing the best assessment of a sustained drug delivery system?"

Following the PRISMA guidelines, we searched MEDLINE for papers published from 1994 to July 2020 on a TMJ arthritis model using rats. We identified the means of pain induction and of nociception assessment. We assessed protocol bias using an adaptation of the QUADAS-2 tool. learn more Animal selection, the reference standard method of pain assessment, applicability of a statistical assessment, and flow and timing were assessed.

Of the 59 full papers we reviewed, 41 performed no pain assessment after the first 7days following induction of the TMJ-related pain model. We eventually identified 18 long-term TMJOA-related pain models. Pain was induced by injection of toxic substances, most commonly Freund's complete adjuvant (50μg per 50μl), formalin at various concentrations, or monosodium iodoacetate (0,5mg per 50μl), into the TMJ, or by physical methods. Few studies reported data on pain after 21days of follow-up. Heterogeneity of induction methods, pain assessment methods, and flow and timing biases precluded a meta-analysis.

Given that pain is 1 of the main symptoms of TMJOA, experimental study protocols should include long-term pain assessment.

Given that pain is 1 of the main symptoms of TMJOA, experimental study protocols should include long-term pain assessment.The human pathogenic trypanosomatid species collectively called the "TriTryp parasites" - Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. - have complex life cycles, with each of these parasitic protists residing in a different niche during their successive developmental stages where they encounter diverse nutrients. Consequently, they adapt their metabolic network accordingly. Yet, throughout the life cycles, carbohydrate metabolism - involving the glycolytic, gluconeogenic and pentose-phosphate pathways - always plays a central role in the biology of these parasites, whether the available carbon and free energy sources are saccharides, amino acids or lipids. In this paper, we provide an updated review of the carbohydrate metabolism of the TriTryps, highlighting new data about this metabolic network, the interconnection of its pathways and the compartmentalisation of its enzymes within glycosomes, cytosol and mitochondrion. Differences in the expression of the branches of the metabolic network betwganisms. These differences are indicative of their adaptation to the different insect vectors and niches occupied in their mammalian hosts.

Reducing serum low-density lipoprotein cholesterol (LDL-C) in hyperlipemia is recognized as an effective strategy to minimize the risk of atherosclerotic cardiovascular disease (ASCVD). MiR-337-3p has already been discovered to play regulatory roles in tumor proliferation and metastasis, adipocyte browning and ischemic brain injury, etc. However, the association between miR-337-3p and LDL-C is unknown.

Gene Expression Omnibus (GEO) dataset and two hyperlipidemic murine models were used to analyze the potential relationship between miR-337-3p and LDL-C. AAV-mediated liver-directed miRNA overexpression in high fat diet (HFD)-fed mouse model was used to examine the effect of miR-337-3p on LDL-C and WB/RT-PCR/ELISA/luciferase assays were used to investigate the underlying mechanism.

The expressions of miR-337-3p were obviously lower in multiple hyperlipidemic mouse models and had a negative correlation with serum LDL-C levels. After confirming the effect of miR-337-3p on the improvement of serum LDL-C in vivo, we discovered PCSK9 might be a possible target of miR-337-3p, which was further proved by in vitro experiments. MiR-337-3p could directly interact with both the PCSK9 3'UTR and promoter to inhibit PCSK9 translation and transcription. Furthermore, the result from DiI-LDL uptake assay under the knockdown of PCSK9 demonstrated that miR-337-3p promoting the absorption of LDL-C in HepG2 cells was dependent on PCSK9, and the result from LDLR-/- mouse model indicated that miR-337-3p regulating LDL-C was dependent on PCSK9/LDLR pathway.

We discovered a new function of miR-337-3p in regulating PCSK9 expression and LDL-C absorption, suggesting miR-337-3p might be a new therapeutic target for the development of antihyperlipidemic drug.

We discovered a new function of miR-337-3p in regulating PCSK9 expression and LDL-C absorption, suggesting miR-337-3p might be a new therapeutic target for the development of antihyperlipidemic drug.Akt (protein kinase B) signaling is frequently activated in diverse cancers. Akt inhibitors such as perifosine and MK-2206 have been evaluated as potential cancer chemotherapeutics. Although both drugs are generally well tolerated, among their most common side-effects vomiting is a major concern. Here we investigated whether these Akt inhibitors evoke emesis in the least shrew model of vomiting. Indeed, both perifosine and MK-2206 induced vomiting with maximal efficacies of 90% at 50 mg/kg (i.p.) and 100% at 10 mg/kg (i.p.), respectively. MK-2206 (10 mg/kg, i.p.) increased c-Fos immunoreactivity both centrally in the shrew brainstem dorsal vagal complex (DVC) emetic nuclei, and peripherally in the jejunum. MK-2206 also evoked phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in both the DVC emetic nuclei and the enteric nervous system in the jejunum. The ERK1/2 inhibitor U0126 suppressed MK-2206-induced emesis dose-dependently. We then evaluated the suppressive efficacy of diverse antiemetics against MK-2206-evoked vomiting including antagonists/inhibitors of the L-type Ca2+ channel (nifedipine at 2.5 mg/kg, subcutaneously (s.c.)); glycogen synthase kinase 3 (GSK-3) (AR-A014418 at 10 mg/kg and SB216763 at 0.25 mg/kg, i.p.); 5-hydroxytryptamine 5-HT3 receptor (palonosetron at 0.5 mg/kg, s.c.); substance P neurokinin NK1 receptor (netupitant at 10 mg/kg, i.p.) and dopamine D2/3 receptor (sulpride at 8 mg/kg, s.c.). All tested antagonists/blockers attenuated emetic parameters to varying degrees. In sum, this is the first study to demonstrate how pharmacological inhibition of Akt evokes vomiting via both central and peripheral mechanisms, a process which involves multiple emetic receptors.

Autoři článku: Lacroixskovbjerg0585 (McCurdy Somerville)