Ulrichmcneil8689

Z Iurium Wiki

Verze z 4. 10. 2024, 16:33, kterou vytvořil Ulrichmcneil8689 (diskuse | příspěvky) (Založena nová stránka s textem „To compare the effectiveness and treatment persistence of ocrelizumab, cladribine and natalizumab in patients with relapsing-remitting multiple sclerosis s…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

To compare the effectiveness and treatment persistence of ocrelizumab, cladribine and natalizumab in patients with relapsing-remitting multiple sclerosis switching from fingolimod.

Using data from MSBase registry, this multicentre cohort study included subjects who had used fingolimod for ≥6 months and then switched to ocrelizumab, cladribine or natalizumab within 3 months after fingolimod discontinuation. We analysed relapse and disability outcomes after balancing covariates using an inverse-probability-treatment-weighting method. Propensity scores for the three treatments were obtained using multinomial-logistic regression. Due to the smaller number of cladribine users, comparisons of disability outcomes were limited to natalizumab and ocrelizumab.

Overall, 1045 patients switched to ocrelizumab (n=445), cladribine (n=76) or natalizumab (n=524) after fingolimod. The annualised relapse rate (ARR) for ocrelizumab was 0.07, natalizumab 0.11 and cladribine 0.25. Compared with natalizumab, the ARR ratio (95 in ARRs results in long-term disability differences.

This study aimed to clarify the frequency and clinical features of monogenic cerebral small vessel disease (mgCSVD) among patients with adult-onset severe CSVD in Japan.

This study included patients with adult-onset severe CSVD with an age of onset ≤55 years (group 1) or >55 years and with a positive family history (group 2). After conducting conventional genetic tests for

and

, whole-exome sequencing was performed on undiagnosed patients. Patients were divided into two groups according to the results of the genetic tests monogenic and undetermined. The clinical and imaging features were compared between the two groups.

Group 1 and group 2 included 75 and 31 patients, respectively. In total, 30 patients had

mutations, 11 patients had

mutations, 6 patients had

mutations, 1 patient had a

mutation, 1 patient had a

mutation and 1 patient had a

mutation. The total frequency of mutations in

,

and

was 94.0% in patients with mgCSVD. In group 1, the frequency of a family history of first relatives, hypertension and multiple lacunar infarctions (LIs) differed significantly between the two groups (monogenic vs undetermined; family history of first relatives, 61.0% vs 25.0%, p=0.0015; hypertension, 34.1% vs 63.9%, p=0.0092; multiple LIs, 87.8% vs 63.9%, p=0.0134).

More than 90% of mgCSVDs were diagnosed by screening for

,

and

. The target sequences for these three genes may efficiently diagnose mgCSVD in Japanese patients.

More than 90% of mgCSVDs were diagnosed by screening for NOTCH3, HTRA1 and ABCC6. The target sequences for these three genes may efficiently diagnose mgCSVD in Japanese patients.

We investigated the clinical characteristics and outcomes of myelin oligodendrocyte glycoprotein (MOG) antibody-associated autoimmune encephalitis (MOGAE) in adult patients.

From an institutional cohort, we analysed adult patients with MOGAE followed-up for more than 1 year. Disease severity was assessed using the modified Rankin scale (mRS) and Clinical Assessment Scale in Autoimmune Encephalitis scores. Immunotherapy profiles, outcomes and disease relapses were evaluated along with serial brain MRI data.

A total of 40 patients were enrolled and categorised into cortical encephalitis (18 patients), limbic encephalitis (LE, 5 patients) and acute disseminated encephalomyelitis (ADEM, 17 patients). 80.0% of patients achieved good clinical outcomes (mRS 0‒2) and 40.0% relapsed. The LE subtype was associated with an older onset age (p=0.004) and poor clinical outcomes (p=0.014) than the other subtypes but with a low rate of relapse (0.0%). 21/25 (84.0%) relapse attacks were associated with an absence or short (≤6 months) immunotherapy maintenance. On MRI, the development of either diffuse cerebral or medial temporal atrophy within the first 6 month was correlated with poor outcomes. MOG-antibody (MOG-Ab) was copresent with anti-N-methyl-D-aspartate receptor (NMDAR)-antibody in 13 patients, in whom atypical clinical presentation (cortical encephalitis or ADEM, p

0.001) and disease relapse (46.2% vs 0.0%, p

0.001) were more frequent compared with conventional NMDAR encephalitis without MOG-Ab.

Outcomes are different according to the three phenotypes in MOGAE. Short immunotherapy maintenance is associated with relapse, and brain atrophy was associated with poor outcomes. Patients with dual antibodies of NMDAR and MOG have a high relapse rate.

Outcomes are different according to the three phenotypes in MOGAE. Short immunotherapy maintenance is associated with relapse, and brain atrophy was associated with poor outcomes. Patients with dual antibodies of NMDAR and MOG have a high relapse rate.

Diagnosing ocular myasthenia gravis (MG) can be challenging because serum antibodies are often not detected. We aimed to explore whether determining extraocular muscle (EOM) weakness using orthoptic measures, including an adapted Hess chart examination, can aid in diagnosing MG.

We conducted a prospective study among patients with acetylcholine receptor antibody positive MG (20 recently diagnosed, 19 chronic) and 14 seronegative MG patients. We compared orthoptic measures to 19 healthy and 18 disease controls with Graves orbitopathy, chronic progressive external ophthalmoplegia or oculopharyngeal muscular dystrophy. Maximal eye duction angles were measured using a synoptophore. Gaze deviations between eyes were measured using standard Hess chart examination with addition of 1 min persistent gaze to assess MG-associated fatiguability. Receiver operating characteristics curve analysis was performed.

For duction angles, the area under the curve (AUC) was 0.73 comparing MG to healthy, and 0.69 comparing to s.Categorization is an essential cognitive and perceptual process for decision-making and recognition. The posterior parietal cortex, particularly the lateral intraparietal (LIP) area has been suggested to transform visual feature encoding into abstract categorical representations. By contrast, areas closer to sensory input, such as the middle temporal (MT) area, encode stimulus features but not more abstract categorical information during categorization tasks. Here, we compare the contributions of the medial superior temporal (MST) and LIP areas in category computation by recording neuronal activity in both areas from two male rhesus macaques trained to perform a visual motion categorization task. MST is a core motion-processing region interconnected with MT and is often considered an intermediate processing stage between MT and LIP. We show that MST exhibits robust decision-correlated motion category encoding and working memory encoding similar to LIP, suggesting that MST plays a substantial role in cognitive computation, extending beyond its widely recognized role in visual motion processing.SIGNIFICANCE STATEMENT Categorization requires assigning incoming sensory stimuli into behaviorally relevant groups. Previous work found that parietal area LIP shows a strong encoding of the learned category membership of visual motion stimuli, while visual area MT shows strong direction tuning but not category tuning during a motion direction categorization task. Here we show that the medial superior temporal (MST) area, a visual motion-processing region interconnected with both LIP and MT, shows strong visual category encoding similar to that observed in LIP. This suggests that MST plays a greater role in abstract cognitive functions, extending beyond its well known role in visual motion processing.In addition to its role in Alzheimer's disease, amyloid precursor protein (APP) has physiological roles in synapse development and function. APP induces presynaptic differentiation when presented to axons, but the mechanism is unknown. Here we show that APP binds neurexin to mediate this synaptogenic activity. APP specifically binds β not α neurexins modulated by splice site 4. Binding to neurexin heparan sulfate glycan and LNS protein domains is required for high-affinity interaction and for full-length APP to recruit axonal neurexin. The synaptogenic activity of APP is abolished by triple knockdown of neurexins in hippocampal neurons pooled from male and female rats. Based on these and previous results, our model is that a dendritic-axonal trans dimer of full-length APP binds to axonal neurexin-β to promote synaptic differentiation and function. Furthermore, soluble sAPPs also bind neurexin-β and inhibit its interaction with neuroligin-1, raising the possibility that disruption of neurexin function by altered levels of full-length APP and its cleavage products may contribute to early synaptic deficits in Alzheimer's disease.SIGNIFICANCE STATEMENT The prevailing model for the basis of Alzheimer's disease is the amyloid cascade triggered by altered cleavage of amyloid precursor protein (APP). APP also has physiological roles at the synapse, but the molecular basis for its synaptic functions is not well understood. Here, we show that APP binds the presynaptic organizing protein neurexin-β and that neurexin is essential for the synaptogenic activity of APP. Furthermore, soluble APP forms generated by APP cleavage also bind neurexin-β and can block interaction with transmembrane synaptogenic ligands of neurexin. These findings reveal a role for neurexin-APP interaction in synapse development and raise the possibility that disruptions of neurexin function may contribute to synaptic and cognitive deficits in the critical early stage of Alzheimer's disease.Fused in sarcoma (FUS) is a pathogenic RNA-binding protein in amyotrophic lateral sclerosis (ALS). We previously reported that FUS stabilizes Synaptic Ras-GTPase activating protein 1 (Syngap1) mRNA at its 3' untranslated region (UTR) and maintains spine maturation. To elucidate the pathologic roles of this mechanism in ALS patients, we identified the SYNGAP1 3'UTR variant rs149438267 in seven (four males and three females) out of 807 ALS patients at the FUS binding site from a multicenter cohort in Japan. Human-induced pluripotent stem cell (hiPSC)-derived motor neurons with the SYNGAP1 variant showed aberrant splicing, increased isoform α1 levels, and decreased isoform γ levels, which caused dendritic spine loss. Moreover, the SYNGAP1 variant excessively recruited FUS and heterogeneous nuclear ribonucleoprotein K (HNRNPK), and antisense oligonucleotides (ASOs) blocking HNRNPK altered aberrant splicing and ameliorated dendritic spine loss. These data suggest that excessive recruitment of RNA-binding proteins, especially HNRNPK, as well as changes in SYNGAP1 isoforms, are crucial for spine formation in motor neurons.SIGNIFICANCE STATEMENT It is not yet known which RNAs cause the pathogenesis of amyotrophic lateral sclerosis (ALS). check details We previously reported that Fused in sarcoma (FUS), a pathogenic RNA-binding protein in ALS, stabilizes synaptic Ras-GTPase activating protein 1 (Syngap1) mRNA at its 3' untranslated region (UTR) and maintains dendritic spine maturation. To elucidate whether this mechanism is crucial for ALS, we identified the SYNGAP1 3'UTR variant rs149438267 at the FUS binding site. Human-induced pluripotent stem cell (hiPSC)-derived motor neurons with the SYNGAP1 variant showed aberrant splicing, which caused dendritic spine loss along with excessive recruitment of FUS and heterogeneous nuclear ribonucleoprotein K (HNRNPK). Our findings that dendritic spine loss is because of excess recruitment of RNA-binding proteins provide a basis for the future exploration of ALS-related RNA-binding proteins.

Autoři článku: Ulrichmcneil8689 (Fowler Munck)