Figueroaweiner9606

Z Iurium Wiki

Verze z 3. 10. 2024, 22:33, kterou vytvořil Figueroaweiner9606 (diskuse | příspěvky) (Založena nová stránka s textem „Selenium nanoparticles (SeNPs) have attracted great attention in recent years due to their unique properties and potential bioactivities. While the product…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Selenium nanoparticles (SeNPs) have attracted great attention in recent years due to their unique properties and potential bioactivities. While the production of SeNPs has been long reported, there is little news about the influence of reaction conditions and clean-up procedure on their physical properties (e.g., shape, size) as well as their antioxidant activity. This study takes up this issue. SeNPs were synthesized by two methods using cysteine and ascorbic acid as selenium reductants. The reactions were performed with and without the use of polyvinyl alcohol as a stabilizer. After the synthesis, SeNPs were cleaned using various procedures. The antioxidant properties of the obtained SeNPs were investigated using DPPH and hydroxyl radical scavenging assays. It was found that their antioxidant activity does not always depend only on the nanoparticles size but also on their homogeneity. Moreover, the size and morphology of selenium nanoparticles are controlled by the clean-up step.Phospholipase A1 (PLA1) is an enzyme that cleaves an ester bond at the sn-1 position of glycerophospholipids, producing a free fatty acid and a lysophospholipid. PLA1 activities have been detected both extracellularly and intracellularly, which are well conserved in higher eukaryotes, including fish and mammals. All extracellular PLA1s belong to the lipase family. In addition to PLA1 activity, most mammalian extracellular PLA1s exhibit lipase activity to hydrolyze triacylglycerol, cleaving the fatty acid and contributing to its absorption into the intestinal tract and tissues. Some extracellular PLA1s exhibit PLA1 activities specific to phosphatidic acid (PA) or phosphatidylserine (PS) and serve to produce lysophospholipid mediators such as lysophosphatidic acid (LPA) and lysophosphatidylserine (LysoPS). A high level of PLA1 activity has been detected in the cytosol fractions, where PA-PLA1/DDHD1/iPLA1 was responsible for the activity. Many homologs of PA-PLA1 and PLA2 have been shown to exhibit PLA1 activity. Although much has been learned about the pathophysiological roles of PLA1 molecules through studies of knockout mice and human genetic diseases, many questions regarding their biochemical properties, including their genuine in vivo substrate, remain elusive.The blockade of kainate receptors, in particular with non-competitive antagonists, has-due to their anticonvulsant and neuroprotective properties-therapeutic potential in many central nervous system (CNS) diseases. Deciphering the structural properties of kainate receptor ligands is crucial to designing medicinal compounds that better fit the receptor binding pockets. EN450 In light of that fact, here, we report experimental and computational structural studies of four indole derivatives that are non-competitive antagonists of GluK1/GluK2 receptors. We used X-ray studies and Hirshfeld surface analysis to determine the structure of the compounds in the solid state and quantum chemical calculations to compute HOMO and LUMO orbitals and the electrostatic potential. Moreover, non-covalent interaction maps were also calculated. It is worth emphasizing that compounds 3 and 4 are achiral molecules crystallising in non-centrosymmetric space groups, which is a relatively rare phenomenon.Capsaicin is a natural compound found in chili peppers and is used in the diet of many countries. The important mechanism of action of capsaicin is its influence on TRPV1 channels in nociceptive sensory neurons. Furthermore, the beneficial effects of capsaicin in cardiovascular and oncological disorders have been described. Many recent publications show the positive effects of capsaicin in animal models of brain disorders. In Alzheimer's disease, capsaicin reduces neurodegeneration and memory impairment. The beneficial effects of capsaicin in Parkinson's disease and depression have also been described. It has been found that capsaicin reduces the area of infarction and improves neurological outcomes in animal models of stroke. However, both proepileptic and antiepileptic effects of capsaicin in animal models of epilepsy have been proposed. These contradictory results may be caused by the fact that capsaicin influences not only TRPV1 channels but also different molecular targets such as voltage-gated sodium channels. Human studies show that capsaicin may be helpful in treating stroke complications such as dysphagia. Additionally, this compound exerts pain-relieving effects in migraine and cluster headaches. The purpose of this review is to discuss the mechanisms of the beneficial effects of capsaicin in disorders of the central nervous system.Inulin is considered a dietary fiber and represents a noteworthy ingredient for food biofortification due to its health effects and its neutral taste. The aim of the work was the evaluation of the quality of pasta produced using whole-meal flours of two ancient Sicilian landraces (Senatore Cappelli-CAP and Timilia-TIM) fortified with two types of inulin (long-chain topinambur inulin IT and low-chain chicory inulin IC), at two different levels of substitution (2 and 4%) to evaluate its possible effect on α-amylase inhibition. The color indices L* and a* were mainly influenced by cultivars, while IT improved the sensory attributes, mainly the elasticity sensation, and influenced less the other sensory attributes adhesiveness, color, odor, taste, and Over Quality Score for both landraces. The cooking quality was linked mainly to the landrace used, due to the very different gluten matrix of CAP and TIM. IC and IT showed promising α-Amy inhibitory activity with comparable IC50 values of 0.45 ± 0.04 and 0.50 ± 0.06 mg/mL. The enrichment of spaghetti with inulin with an inhibitory effect on α-amylase determined the hypoglycemic properties of pasta, thus lowering the corresponding IC50 value.The aquaculture industry has become a sustainable source of food for humans. Remaining challenges include disease issues and ethical concerns for the discomfort and stress of farmed fish. There is a need for reliable biomarkers to monitor welfare in fish, and the stress hormone cortisol has been suggested as a good candidate. This study presents a novel method for measurement of cortisol in fish feces based on enzymatic hydrolysis, liquid-liquid extraction, derivatization, and finally instrumental analysis by liquid chromatography coupled with tandem mass spectrometry. Hydrolysis and extraction conditions were optimized. Cortisol appeared to be mostly conjugated to sulfate and less conjugated to glucuronic acid in the studied samples of feces from farmed Atlantic salmon. The method was suitable for quantification of cortisol after enzymatic deconjugation by either combined glucuronidase and sulfatase activity, or by glucuronidase activity alone. The limit of detection was 0.15 ng/g, the limit of quantification was 0.34 ng/g, and the method was linear (R2 > 0.997) up to 380 ng/g, for measurement of cortisol in wet feces. Method repeatability and intermediate precision were acceptable, both with a coefficient of variation (CV) of 11%. Stress level was high in fish released into seawater, and significantly reduced after eight days.Reusing food waste is becoming popular in pharmaceutical industries. Watermelon (Citrullus lanatus) rind is commonly discarded as a major solid waste. Here, the in vitro cytotoxic potential of watermelon rind extracts was screened against a panel of human cancer cell lines. Cell cycle analysis was used to determine the induction of cell death, whereas annexin V-FITC binding, caspase-3, BAX, and BCL-2 mRNA expression levels were used to determine the degree of apoptosis. VEGF-promoting angiogenesis and cell migration were also evaluated. Moreover, the identification of phytoconstituents in the rind extract was achieved using UPLC/T-TOF-MS/MS, and a total of 45 bioactive compounds were detected, including phenolic acids, flavonoids aglycones, and their glycoside derivatives. The tested watermelon rind extracts suppressed cell proliferation in seven cancer cell lines in a concentration-dependent manner. The cytotoxicity of the rind aqueous extract (RAE) was higher compared with that of the other extracts. In addition to a substantial inhibitory effect on cell migration, the RAE triggered apoptosis in HCT116 and Hep2 cells by driving the accumulation of cells in the S phase and elevating the activity of caspase-3 and the BAX/BCL-2 ratio. Thus, a complete phytochemical and cytotoxic investigation of the Citrullus lanatus rind extract may identify its potential potency as an anticancer agent.(1) Background Recent data indicate that receptors for GLP-1 peptide are involved in the activity of the mesolimbic system. Thus, the purpose of the present study was to examine the effect of the selective dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, on morphine dependence in mice. (2) Methods Morphine dependence in mice was obtained by administration of increasing doses of morphine for eight consecutive days, twice a day. On the 9th day of the experiment, the naloxone-induced (2 mg/kg, ip) morphine withdrawal signs (jumping) were assessed. Moreover, behavioral effects of short-term (60 h after morphine discontinuation) and long-term (14 days after morphine discontinuation) morphine withdrawal were observed. In terms of behavioral effects, the depressive effect in the forced swim test and anxiety in the elevated plus maze test were investigated. Locomotor activity of mice was also studied. (3) Results The administration of linagliptin (10 and 20 mg/kg, ip) for 8 consecutive days before morphine injections significantly diminished the number of naloxone-induced morphine withdrawal signs (jumping) in mice. In addition, the cessation of morphine administration induced depressive behavior in mice which were observed during short- and long-term morphine withdrawal. Linagliptin administered during morphine withdrawal significantly reduced the depressive behavior in studied mice. Furthermore, the short-term morphine withdrawal evoked anxiety which also was reduced by linagliptin in mice. (4) Conclusions The present study reveals that GLP-1 receptors are involved in morphine dependence. What is more, linagliptin might be a valuable drug in attenuating the physical symptoms of morphine dependence. It might be also a useful drug in reducing emotional disturbances which may develop during the morphine withdrawal period.We sought to identify the characteristic metabolite profile of blood plasma samples obtained from patients with preeclampsia. Direct high-resolution mass spectrometry was used to analyze samples from 79 pregnant women, 34 of whom had preeclampsia. We performed a comparative analysis of the metabolite profiles and found that they differed between pregnant women with and without preeclampsia. Lipids and sugars were identified as components of the metabolite profile that are likely to be associated with the development of preeclampsia. While PE was established only in the third trimester, a set of metabolites specific for the third trimester, including 2-(acetylamino)-1,5-anhydro-2-deoxy-4-O-b-D-galactopyranosyl-D-arabino-Hex-1-enitol, N-Acetyl-D-glucosaminyldiphosphodolichol, Cer(d180/200), and allolithocholic acid, was already traced in the first trimester. These components are also likely involved in lipid metabolism disorders and the development of oxidative stress.

Autoři článku: Figueroaweiner9606 (Bruce Zimmerman)