Gregoryhaas3346
Copyright © 2020 Gao, Liu, Song, Feng, Duan, Huang and Zhou.Heme is an iron ion-containing molecule found within hemoproteins such as hemoglobin and cytochromes that participates in diverse biological processes. Although excessive heme has been implicated in several diseases including malaria, sepsis, ischemia-reperfusion, and disseminated intravascular coagulation, little is known about its regulatory and signaling functions. Furthermore, the limited understanding of heme's role in regulatory and signaling functions is in part due to the lack of curated pathway resources for heme cell biology. Here, we present two resources aimed to exploit this unexplored information to model heme biology. The first resource is a terminology covering heme-specific terms not yet included in standard controlled vocabularies. Using this terminology, we curated and modeled the second resource, a mechanistic knowledge graph representing the heme's interactome based on a corpus of 46 scientific articles. Finally, we demonstrated the utility of these resources by investigating the role of heme in the Toll-like receptor signaling pathway. Our analysis proposed a series of crosstalk events that could explain the role of heme in activating the TLR4 signaling pathway. In summary, the presented work opens the door to the scientific community for exploring the published knowledge on heme biology. Copyright © 2020 Humayun, Domingo-Fernández, Paul George, Hopp, Syllwasschy, Detzel, Hoyt, Hofmann-Apitius and Imhof.Hybridizing carbon nanomaterials (CNMs) with amyloid fibrils-the ordered nanostructures self-assembled by amyloidogenic peptides-has found promising applications in bionanotechology. Understanding fundamental interactions of CNMs with amyloid peptides and uncovering the determinants of their self-assembly structures and dynamics are, therefore, pivotal for enriching and enabling this novel class of hybrid nanomaterials. Here, we applied atomistic molecular dynamics simulations to investigate the self-assembly of two amyloid peptides-the amyloidogenic core residues 16-22 of amyloid-β (Aβ16-22) and the non-amyloid-β core of α-synuclein (NACore68-78)-on the surface of carbon nanotubes (CNT) with different sizes and chirality. Our computational results showed that with small radial CNTs, both types of peptides could form β-sheets wrapping around the nanotube surface into a supercoiled morphology. The angle between β-strands and nanotube axes in the supercoil structure depended mainly on the peptide sequence and CNT radius, but also weakly on the CNT chirality. Large radial CNTs and the extreme case of the flat graphene nanosheet, on the other hand, could nucleate amyloid fibrils perpendicular to the surface. Our results provided new insights of hybridizing CNMs with amyloid peptides and also offered a novel approach to manipulate the morphology of CNM-induced amyloid assembly by tuning the surface curvature, peptide sequence, and molecular ratio between peptides and available CNM surface area, which may be useful in engineering nanocomposites with high-order structures. Copyright © 2020 Xing, Sun, Wang and Ding.The performance of anodes of lithium-ion batteries relies largely on the architecture and composition of the hybrid active materials. We present a two-step, seed-free, solution-based method for the direct growth of hierarchical charantia-like TiO2/Fe2O3 core/shell nanotube arrays on carbon cloth substrates. An ultrahigh loading of the nanomaterial on carbon fibers was achieved with this method without the use of a binder. This three-dimensional porous hollow architecture and its direct contact with the CC current collector ensure an efficient electronic pathway. The hollow TiO2 framework effectively protects the hierarchical charantia-like TiO2/Fe2O3 hollow core/shell arrays from collapsing because of its negligible volume change during cycling. Meanwhile, the self-assembled α-Fe2O3 hollow nanospheres guarantee a large capacity and contact area with the electrolyte. This flexible anode with a 3D porous charantia-like hollow architecture exhibits high cycle performance, reversible capacity, and rate capability. These nanotube arrays maintain a high reversible capacity of 875 mAh g-1 after 200 cycles at a current density of 200 mA g-1. This simple, cost-effective, and scalable electrode fabrication strategy can be implemented in the fabrication of high-performance wearable energy storage devices. Copyright © 2020 Xu, Zhang, Zhang, Shen, Zhao, Zhou and Weng.The 1D Cu(II) coordination polymers [Cu3(L1)(NO3)4(H2O)2]n (1) and [Cu2(H2L2)(NO3)(H2O)2]n(NO3)n (2) have been synthesized using the aroylhyrazone Schiff bases N' 1,N' 2-bis(pyridin-2-ylmethylene)oxalohydrazide (H2L1) and N' 1,N' 3-bis(2-hydroxybenzylidene)malonohydrazide (H4L2), respectively. They have been characterized by elemental analysis, infrared (IR) spectroscopy, UV-Vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), single crystal X-ray diffraction and variable temperature magnetic susceptibility measurements (for 2). The ligand (L1)2- coordinates in the iminol form in 1, whereas the amide coordination is observed for (H2L2)2- in 2. Either the ligand bridge or the nitrate bridge in 2 mediates weak antiferromagnetic coupling. The catalytic performance of 1 and 2 has been investigated toward the solvent-free microwave-assisted oxidation of a secondary alcohol (1-phenylethanol used as model substrate). At 120°C and in the presence of the nitroxyl radical 2,2,6,6-tetramethylpiperydil-1-oxyl (TEMPO), the complete conversion of 1-phenylethanol into acetophenone occurs with TOFs up to 1,200 h-1. Copyright © 2020 Sutradhar, Alegria, Barman, Guedes da Silva, Liu and Pombeiro.A label-free electrochemical detection platform for the sensitive and rapid detection of Flightless I (Flii) protein, a biomarker of wound chronicity, has been developed using nanoporous anodic alumina (NAA) membranes modified with Flii antibody recognition sites. The electrochemical detection is based on the nanochannel blockage experienced upon Flii capture by immobilized antibodies within the nanochannels. This capture impedes the diffusion of redox species [[Fe(CN)6]4-/3-] toward a gold electrode attached at the backside of the modified NAA membrane. Partial blockage causes a decrease in the oxidation current of the redox species at the electrode surface which is used as an analytical signal by the reported biosensor. The resulting biosensing system allows detection of Flii at the levels found in wounds. Two types of assays were tested, sandwich and direct, showing less then 3 and 2 h analysis time, respectively, a significant reduction in time from the nearly 48 h required for the conventional Western blot assay. Slightly higher sensitivity values were observed for the sandwich-based strategy. With faster analysis, lack of matrix effects, robustness, ease of use and cost-effectiveness, the developed sensing platform has the potential to be translated into a point-of-care (POC) device for chronic wound management and as a simple alternative characterization tool in Flii research. Copyright © 2020 Rajeev, Melville, Cowin, Prieto-Simon and Voelcker.Sodium-ion batteries (SIBs) are emerging power sources for the replacement of lithium-ion batteries. Recent studies have focused on the development of electrodes and electrolytes, with thick glass fiber separators (~380 μm) generally adopted. Entinostat in vivo In this work, we introduce a new thin (~50 μm) cellulose-polyacrylonitrile-alumina composite as a separator for SIBs. The separator exhibits excellent thermal stability with no shrinkage up to 300°C and electrolyte uptake with a contact angle of 0°. The sodium ion transference number, t Na + , of the separator is measured to be 0.78, which is higher than that of bare cellulose ( t Na + 0.31). These outstanding physical properties of the separator enable the long-term operation of NaCrO2 cathode/hard carbon anode full cells in a conventional carbonate electrolyte, with capacity retention of 82% for 500 cycles. Time-of-flight secondary-ion mass spectroscopy analysis reveals the additional role of the Al2O3 coating, which is transformed into AlF3 upon long-term cycling owing to HF scavenging. Our findings will open the door to the use of cellulose-based functional separators for high-performance SIBs. Copyright © 2020 Jo, Jo, Qiu, Yashiro, Shi, Wang, Yuan and Myung.The self-assembly of styrene-type olefins into the corresponding stilbenes was conveniently performed in the Deep Eutectic Solvent (DES) mixture 1ChCl/2Gly under air and in the absence of hazardous organic co-solvents using a one-pot chemo-biocatalytic route. Here, an enzymatic decarboxylation of p-hydroxycinnamic acids sequentially followed by a ruthenium-catalyzed metathesis of olefins has been investigated in DES. Moreover, and to extend the design of chemoenzymatic processes in DESs, we also coupled the aforementioned enzymatic decarboxylation reaction to now concomitant Pd-catalyzed Heck-type C-C coupling to produce biaryl derivatives under environmentally friendly reaction conditions. Copyright © 2020 Ríos-Lombardía, Rodríguez-Álvarez, Morís, Kourist, Comino, López-Gallego, González-Sabín and García-Álvarez.The halide perovskite (PVSK) material, an excellent light absorber with fast carrier kinetics, has received increased attention as a potential photocatalyst for organic synthesis. Herein, we report a straightforward synthesis of chemically modified halide perovskite and its application as an efficient photocatalyst to convert styrene into benzaldehyde. A simple method is employed to synthesize the chemically modified CsPbBr3/Cs4PbBr6 nanosheets by using ZrCl4 to simultaneously achieve the Cl doping and the surface modification with Zr species. The photocatalytic oxidation rate of styrene to benzaldehyde catalyzed by surface-modified CsPbBr3/Cs4PbBr6 nanosheets under visible light can reach 1,098 μmol g-1 h-1, 2.9 times higher than that of pristine CsPbBr3/Cs4PbBr6 nanosheets (372 μmol g-1 h-1). The enhanced photocatalytic performance may originate from the modified band structure induced by the synergistic effect of Cl doping and surface modification, whereby the same methodology can be applied to MAPbBr3. This work demonstrates the surface modification of PVSK materials and their potential as efficient photocatalyst toward organic synthesis. Copyright © 2020 Qiu, Wang, Zhao, Dai, Dong, Chen, Chen and Li.Tissue engineering is a promising strategy for the repair and regeneration of damaged tissues or organs. Biomaterials are one of the most important components in tissue engineering. Recently, magnetic hydrogels, which are fabricated using iron oxide-based particles and different types of hydrogel matrices, are becoming more and more attractive in biomedical applications by taking advantage of their biocompatibility, controlled architectures, and smart response to magnetic field remotely. In this literature review, the aim is to summarize the current development of magnetically sensitive smart hydrogels in tissue engineering, which is of great importance but has not yet been comprehensively viewed. Copyright © 2020 Liu, Liu, Cui, Wang, Zhang and Tang.