Irwinthrane1815
Therefore, the R. wratislaviensis KT112-7, R. wratislaviensis CH628, and R. ruber P25 strains are shown to degrade the HO-PCBs mixtures efficiently and are found to be stable to their toxic action.High levels of steroid estrogens are continuously detected in the soil environment, and even the concentration in vegetables and fruits has reached levels that have an impact on children's health, which has attracted growing attention. Moreover, microplastics (MPs) in the soil system are also of increasing concern worldwide. The effects of MPs on the adsorption of organic pollutants in soil systems, however, remain largely unexplored. In this study, MPs common in greenhouse vegetable soil (polyethylene, polyvinyl chloride and polystyrene) were selected to investigate the effect of MPs occurrence on the adsorption of 17β‑estradiol (E2) in soil under various conditions. The experimental results showed that the adsorption capacity of MPs to E2 is stronger than that of soil. Moreover, the occurrence of MPs in soil increased the adsorption capacity for E2, and the addition amount and aging of MPs enhanced the promotion effect. This enhancement indicated that the input of MPs into soil might reduce the mobility of E2 by improving the adsorption capacity of the soil. These results deepen the understanding of the adsorption behavior of E2 in the coexisting system of MPs and soil and provide a theoretical basis for E2 pollution control.Microplastics (MPs) are becoming ubiquitous pollutants in the global environments, which can potentially sorb metals ions in aquatic environments, causing adverse consequences. The interaction between Sr2+ and MPs, and the involved mechanisms have not been studied. Here we investigated the sorption behaviors of Sr2+ by polyamide (PA), polystyrene (PS), and polypropylene (PP). Three phenomenological mathematical models were developed and applied to describe the rate-limiting step in the sorption process. The molecular dynamic (MD) simulation was also conducted to investigate the sorption mechanism. The results showed that the optimum isotherm was presented by the nonlinear Temkin model. The maximum sorption capacities of Sr2+ by PA, PS and PP were 31.8, 51.4 and 52.4 μg g-1, respectively, with the initial Sr2+concentration of 3400 μg L-1. The phenomenological models adequately described the sorption kinetics data, concluding that the internal diffusion was the limiting step for Sr2+ sorption onto PS; while the external and internal diffusion were the slowest steps in the case of PA and PP. The MD study revealed that the main sorption mechanism was electrostatic interaction. The interaction energies of PA-SrCl2, PS-SrCl2, and PP-SrCl2 were -5.638, -6.418, and -13.05 kcal mol-1.A stable rGO-AmPyraz@3DNiF gas diffusion electrode was prepared via modification of 3D nickel foam (3D-NiF) with aminopyrazine functionalized reduced graphene oxide (rGO-AmPyraz) for the electro Fenton (EF) process. The generation capacity of H2O2 and OH radicals by this electrode was assessed relative to 3DNiF and rGO-AmPyraz@indium tin oxide (ITO) electrodes and with/without a coated Fe3O4 plate. https://www.selleckchem.com/products/a-438079-hcl.html The rGO-AmPyraz@3DNiF electrode showed the maximum production of these radicals at 2.2 mmol h-1 and 410 μmol h-1, respectively (pH 3) with the least leaching of Ni2+ such as less then 0.5 mg L-1 even after 5 cycles (e.g., relative to 3DNiF (24 mg L-1). Such control on Ni ion leaching was effective all across the tested pH from 3 to 8.5. Its H2O2 generation capacity was far higher than that of the nanocarbon supported on commercially available ITO conductive glass. The mineralization of dichlorvos (at initial concentration 50 mg L-1) was confirmed with its complete degradation as the concentrations of the end products (e.g., free Cl-1 (5.36 mg L-1) and phosphate (12.89 mg L-1)) were in good agreement with their stoichiometric concentration in dichlorvos. As such, the proposed system can be recommended as an effective electrode to replace nanocarbon-based product commonly employed for EF processes.In this work, cobalt-nickel powder (Co-NP) synthesized through electroless plating was used as a heterogeneous bimetallic catalyst for peroxymonosulfate (PMS) activation to degrade sulfamethoxazole (SMX) in the aqueous phase. Compared with different oxidation systems and different catalysts, it was proved that Co-NP had excellent catalytic ability, fast electron transfer rate and good stability. The effects of key parameters (initial pH, SMX concentration, catalyst and PMS dosages) on SMX degradation and ion leaching were studied in detail. Furthermore, the sensitivity of inorganic anions and different pollutants towards the Co-NP/PMS system was studied to investigate its application in natural water bodies. Quenching test showed that the main reactive oxygen species generated during the reaction were OH and SO4-, of which SO4- played a predominating role. Combined with XPS analysis, the activation mechanism was concluded that free radicals were mainly generated through the valence change of Co and Ni. Based on the seven intermediates measured through ultrahigh performance liquid chromatograph-mass spectrometry (UPLC-QTOF-MS/MS), the possible degradation pathways of SMX were proposed. Notably, this study provided a new kind of supporter for advanced oxidation processes and electroless plating technology.Solid waste incineration is a major emission source of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). The injection of N- and S-containing compounds is an effective way to suppress the formation of PCDD/Fs, but this approach is still shortcoming because additional pollutants such as NH3 and SOx are emitted. To avoid the secondary pollutions, a de novo synthesis inhibition mechanism in the presence of CaO was postulated to transform CuCl2 to CuO and deplete Cl2 and HCl. Chlorobenzenes (CBzs), which are indicators and precursors of PCDD/Fs, were adopted to prove the inhibitory effect of CaO at 400 °C, using both simulated synthetic ash and extracted air pollution control residues. As the molar ratio of CaO to CuCl2 exceeded 3, the residual carbon increased, and the inhibition efficiency of CBzs exceeded 93 %. This performance is superior to the corresponding performance of NH4H2PO4, which has been proved to be a potential inhibitor. Furthermore, with CaO, chlorides remained in the solid phase and had inactive catalytic performance; and they were the major products rather than HCl, Cl2 and Cu2OCl2.