Braunbest3809
Hypalbuminemia is associated with numerous postoperative complications, so a perioperative albumin substitution is often considered. The objective of SuperAdd is to investigate whether substitution of human albumin, aiming to maintain a serum concentration > 30 g/l, can reduce postoperative complications in normovolemic surgical patients in comparison with standard care.
SuperAdd is a single-center, prospective, randomized, outcome-assessor blinded, patient blinded controlled trial. The primary outcome is the frequency of postoperative complications identified using the Postoperative Morbidity Survey graded ≥ 2 according to the Clavien-Dindo Score. Adult patients at risk to develop hypalbuminemia, i.e., ASA III or IV or high-risk surgery, are recruited after written informed consent was obtained. The albumin concentration is assessed before the induction of anesthesia and every 3h until admission to the postanesthesia care unit. If albumin concentrations drop below 30 g/l, patients are randomly allocatered on 18 October 2016 and has the Universal Trial Number (UTN) U1111-1181-2625.
Metastatic breast cancer remains incurable. Next-generation sequencing (NGS) offers the ability to identify actionable genomic alterations in tumours which may then be matched with targeted therapies, but the implementation and utility of this approach is not well defined for patients with metastatic breast cancer.
We recruited patients with advanced breast cancer of any subtype for prospective targeted NGS of their most recent tumour samples, using a panel of 108 breast cancer-specific genes. Genes were classified as actionable or non-actionable using the European Society of Medical Oncology Scale for Clinical Actionability of Molecular Targets (ESCAT) guidelines.
Between February 2014 and May 2019, 322 patients were enrolled onto the study, with 72% (n = 234) of patients successfully sequenced (n = 357 samples). The majority (74%, n = 171) of sequenced patients were found to carry a potentially actionable alteration, the most common being a PIK3CA mutation. Forty-three percent (n = 74) of patients with actionable alterations were referred for a clinical trial or referred for confirmatory germline testing or had a change in therapy outside of clinical trials. We found alterations in AKT1, BRCA2, CHEK2, ESR1, FGFR1, KMT2C, NCOR1, PIK3CA and TSC2 to be significantly enriched in our metastatic population compared with primary breast cancers. Concordance between primary and metastatic samples for key driver genes (TP53, ERBB2 amplification) was > 75%. Additionally, we found that patients with a higher number of mutations had a significantly worse overall survival.
Genomic profiling of patients with metastatic breast cancer can have clinical implications and should be considered in all suitable patients.
Genomic profiling of patients with metastatic breast cancer can have clinical implications and should be considered in all suitable patients.
Syndecans regulate cell migration thus having key roles in scarring and wound healing processes. Our previous results have shown that Thy-1/CD90 can engage both αvβ3integrin and Syndecan-4 expressed on the surface of astrocytes to induce cell migration. Despite a well-described role of Syndecan-4 during cell movement, information is scarce regarding specific Syndecan-4 partners involved in Thy-1/CD90-stimulated cell migration.
Mass spectrometry (MS) analysis of complexes precipitated with the Syndecan-4 cytoplasmic tail peptide was used to identify potential Syndecan-4-binding partners. The interactions found by MS were validated by immunoprecipitation and proximity ligation assays. The conducted research employed an array of genetic, biochemical and pharmacological approaches, including PAR-3, Syndecan-4 and Tiam1 silencing, active Rac1 GEFs affinity precipitation, and video microscopy.
We identified PAR-3 as a Syndecan-4-binding protein. AUNP-12 ic50 Its interaction depended on the carboxy-terminal EFYA sequence pcarring.
The development of autoantibodies in patients with rheumatoid arthritis (RA) has potential as a marker of treatment response. This analysis assessed the association of an autoantibody response to carbamylated vimentin (anti-CarbV) and to vimentin modified by citrullination (anti-MCV) with response to treatment and structural damage progression in the phase III study RA-BEGIN.
Data from patients in the modified intent-to-treat population of RA-BEGIN were included for analysis; these patients received methotrexate (MTX), baricitinib 4 mg once daily, or baricitinib plus MTX during the 52-week study period. Endpoints analyzed were clinical response to treatment, assessed using change from baseline (CFB) in Simplified Disease Activity Index (SDAI) and Disease Activity Score for 28-joint count with serum high-sensitivity C-reactive protein (DAS28-hsCRP), and structural damage progression, assessed using CFB greater than the smallest detectable change in the van der Heijde-modified Total Sharp Score. The anti-Cagression, but no association between anti-MCV antibodies and radiographic progression was observed.
High titers of anti-CarbV IgA and IgG isotypes, but not anti-MCV isotypes, may be useful prognostic biomarkers for identifying the likelihood of the response to treatment and structural damage progression in patients with RA.
High titers of anti-CarbV IgA and IgG isotypes, but not anti-MCV isotypes, may be useful prognostic biomarkers for identifying the likelihood of the response to treatment and structural damage progression in patients with RA.
Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis (PD). Combination therapies are emerging as a promising treatment for tissue damage. Here, we investigated the therapeutic potential of SIRT1-modified human umbilical cord mesenchymal stem cells (hUCMSCs) for peritoneal fibrosis.
SIRT1 was overexpressed in hUCMSCs to establish SIRT1-modified hUCMSCs. Co-culture and transplantation experiments were performed in TGF-β-stimulated Met-5A cells and peritoneal damage rodent model to assess the therapeutic potential of SIRT1-modified hUCMSCs for peritoneal fibrosis through qPCR, Western blot, and peritoneal function analyses.
SIRT1-modified hUCMSC administration had more potent anti-fibrosis ability than hUCMSCs, which significantly inhibited the expression of fibrotic genes and suppressed EMT process, increased ultrafiltration volume, and restored homeostasis of bioincompatible factors in dialysis solution. Mechanistically, SIRT1-modified hUCMSCs attenuated peritoneal fibrosis through reducing peritoneal inflammation and inhibiting the TGF-β/Smad3 pathway in peritoneal omentum tissues.
SIRT1-modified hUCMSCs might work as a promising therapeutic strategy for the treatment of peritoneal dialysis-induced peritoneal damage and fibrosis.
SIRT1-modified hUCMSCs might work as a promising therapeutic strategy for the treatment of peritoneal dialysis-induced peritoneal damage and fibrosis.
The identification of asymptomatic individuals with Plasmodium falciparum infection is difficult because they do not seek medical treatment and often have too few asexual parasites detectable using microscopy or rapid diagnostic tests (≤ 200 parasites perμl). Quantitative PCR (qPCR) may provide greater sensitivity and permits estimation of the initial template DNA concentration. This study examined the hypothesis that qPCR assays using templates with higher copy numbers may be more sensitive for P. falciparum than assays based on templates with lower copy numbers.
To test this hypothesis, ten qPCR assays for DNA sequences with template copy numbers from 1 to 160 were compared using parasite DNA standards (n = 2) and smear-positive filter paper blots from asymptomatic smear-positive subjects (n = 96).
Based on the testing of P. falciparum parasite DNA standards and filter paper blots, cycle threshold values decreased as the concentrations of template DNA and template copy numbers increased (p < 0.001)c infection increases with template copy number. However, because even the most sensitive qPCR assays (with template copy numbers from 32 to 160) detected fewer than 50% of infections with ≤ 200 asexual parasites per μl, the sensitivity of qPCR must be increased further to identify all smear-positive, asymptomatic individuals in order to interrupt transmission.
Metaplastic breast carcinoma (MBC) is a rare histological type of breast cancer, which commonly shows resistance to standard therapies and is associated with poor prognosis. The immune microenvironment in MBC and its significance has not been well established due to its low incurrence rate and complex components. We aimed to investigate the diversity of immune parameters including subsets of TILs and PDL1/PD1 expression in MBC, as well as its correlation with prognosis.
A total of 60 patients diagnosed with MBC from January 2006 to December 2017 were included in our study. The percentage (%) and quantification (per mm
) of TILs and presence of tertiary lymphoid structures (TLS) were evaluated by hematoxylin and eosin staining (HE). The quantification of CD4+, CD8+ TILs (per mm
), and PD-1/PDL1 expression were evaluated through immunohistochemistry and analyzed in relation to clinicopathological characteristics. A ≥ 1% membranous or cytoplasmatic expression of PD1 and PDL1 was considered a positive exprealso associated with longer survival.
The immune characteristics differ in various subtypes as well as components of MBC. Immune parameters are key predictive factors of MBC and provide the clinical significance of applying immune checkpoint therapies in patients with MBC.
The immune characteristics differ in various subtypes as well as components of MBC. Immune parameters are key predictive factors of MBC and provide the clinical significance of applying immune checkpoint therapies in patients with MBC.Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is one of the most severe swine diseases that affects almost all swine-breeding countries. Nonstructural protein 2 (NSP2) is one of the most important viral proteins in the PRRSV life cycle. Our previous study showed that PRRSV NSP2 could induce the formation of aggresomes. In this study we explored the effects of aggresome formation on cells and found that NSP2 could induce autophagy, which depended on aggresome formation to activate aggrephagy. The transmembrane and tail domains of NSP2 contributed to aggrephagy and the cellular protein 14-3-3ε played an important role in NSP2-induced autophagy by binding the tail domain of NSP2. These findings provide information on the function of the C-terminal domain of NSP2, which will help uncover the function of NSP2 during PRRSV infection.
COVID-19 is a highly infectious respiratory disease. No therapeutics have yet been proven effective for treating severe COVID-19.
To determine whether human umbilical cord mesenchymal stem cell infusion may be effective and safe for the treatment of severe COVID-19.
Patients with severe COVID-19 were randomly divided into 2 groups the standard treatment group and the standard treatment plus hUC-MSC infusion group. The incidence of progression from severe to critical illness, 28-day mortality, clinical symptom improvement, time to clinical symptom improvement, hematologic indicators including C-reactive protein, lymphocyte number, and interleukin 6, and imaging changes were observed and compared between the two groups.
The incidence of progression from severe to critical illness and the 28-day mortality rate were 0 in the hUC-MSC treatment group, while 4 patients in the control group deteriorated to critical condition and received invasive ventilation; 3 of them died, and the 28-day mortality rate was 10.