Potterparrott5378

Z Iurium Wiki

Verze z 3. 10. 2024, 19:51, kterou vytvořil Potterparrott5378 (diskuse | příspěvky) (Založena nová stránka s textem „Soybean is an important oil crop cultivated worldwide. With the increasing global population crossed with growing challenging cultivation conditions, impro…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Soybean is an important oil crop cultivated worldwide. With the increasing global population crossed with growing challenging cultivation conditions, improving soybean breeding by selecting important traits is urgent needed. Genes coding for plant fatty acid desaturases (FADs) genes are major candidates for that, because they are involving in controlling fatty acid composition and holding membrane fluidity under abiotic stress. Here, 75 FADs were found in three soybean genomes, which were further classified into four sub-groups. Phylogenetic tree, gene structure, motif and promoter analysis showed that the FAD gene family was conserved in the three soybeans. In addition, the numbers of omega desaturase from Chinese cultivated varieties were significantly higher than those in Chinese wild soybean and ancient polyploid soybean, respectively. However, it was the opposite for the sphingolipid subfamily. These results indicated that each subfamily was subjected to different selection pressures during cultivation and domestication. As the extra genes of the subfamily were very close to other family members' positions on chromosomes, they should be produced by duplication. The cis-element analysis of FAD promoter sequences revealed that upstream sequences of FAD contained abundant light, hormone and abiotic stress responsive cis-elements, suggesting that the quality of soybean could be improved by regulating these stresses. Expression analysis of Chinese wild soybean under salt stress showed that GsDES1.1, GsDES1.2, GsFAD2.1 and GsSLD1 in leaves and GsSLD2, GsSLD5 and GsSLD6 in roots were not closely related to salt stress response. Therefore, we explored the significant role of conserved, duplicated and neofunctionalized FAD in the domestication of soybean, which contributes to the importance of soybean as a global oil crop.The study focused on the preparation and antibacterial evaluation of chitosan (CHT), carboxymethyl chitosan (CMC) and their respective metal composites. All the samples were characterized using Fourier Transform Infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The antibacterial potentials of the samples were tested against Escherichia coli, Klebsiella sp., Pseudomonas aeruginosa A, and Pseudomonas aeruginosa B. SEM results revealed different changes in samples surfaces as a result of chemical modification. EDS revealed the presence of Ni and Cu in the composites. XRD spectra of CMC showed that the crystalline region of CHT was reduced by the modification. The antibacterial results indicated that the samples had inhibitory and bactericidal effects against Escherichia coli and Klebsiella sp. at 1000, 500, and 250 mg mL-1. The study showed that CMC and CMC-metal composites performed better at inhibiting the growth of microorganisms than CHT and CHT-metal composites.Bone defect is usually difficult to recover quickly, and bone scaffold transplantation is considered to be an effective method. Biomaterials have a wide range of application prospects in bone tissue repair, and the two key problems are the selection of materials and cells. The object of this study was to discuss the structural characteristics of bone scaffold materials and their effects on bone repair in vivo. The chitin-hydroxyapatite (HAP)-collagen composite scaffolds (CHCS) was prepared with epichlorohydrin (ECH) as crosslinking agent. The structure was characterized and the compressive strength, porosity, water absorbency and stability were investigated. The biocompatibility and osteogenic differentiation of CHCS in vitro were detected, and the effect of defect repair in vivo was evaluated. The results suggested that HAP not only enhanced the compressive strength of CHCS, but also promoted the formation of calcium nodules due to its bone conductivity. Histological staining showed that collagen promoted collagen deposition and new bone formation. X-ray images also indicated that CHCS transplantation accelerated bone repair. Therefore, CHCs has immense potential in bone regeneration.Developing a multifunctional wound dressing that protects, cures and indicates the healing progress, is a new approach of investigation. Red cabbage extract (RCE), consisting of bioactive compounds that have antioxidant, anti-inflammatory, anti-carcinogenic, bactericidal, antifungal, and antiviral activities, was utilized as a natural pH-sensitive indicator. Chitosan-based hydrogel, encapsulating RCE, was developed to obtain a smart therapeutic pH-sensitive wound dressing as antimicrobial bio-matrix provides a comfortable cushion for wound bed and indicates its status. Methacrylated-chitosan was crosslinked by different concentrations of methylenebisacrylamide (MBAA) by which hydrogel mechanical and morphological properties were tuned. The proposed mechanism for hydrogel formation was confirmed by FT-IR. The coloristic properties of the RCE and the changes in color intensity as a function of pH were confirmed by UV-Vis spectroscopy. The effect of MBAA on the mechanical, swelling, release and morphological properties of hydrogel were investigated. MBAA (2.5% wt/v) in 2% wt/v chitosan showed preferable mechanical (20 KPa), swelling (1294% at pH 8 ± 0.2), and release (prolonged up to 5 days) properties. Hydrogel matrices, loaded on cotton gauze submerged in different pH buffer solutions, showed explicit color changes from green to red as pH changed from 9 to 4.Major depressive disorder (MDD) is the most common mood disorder, and causes various mental, physical and cognitive symptoms. Clinicians diagnose MDD using multiple interviews and overall impression during the interviews, which makes MDD diagnosis highly subjective. To overcome this, we investigated novel protein biomarker for MDD. Serum from each subject were analyzed using nano liquid chromatography-triple time-of-flight mass spectrometry. We identified two proteins, zinc-alpha-2-glycoprotein (ZA2G) and keratin type II cytoskeletal 1 (K2C1), as final biomarkers. These biomarkers were downregulated during depression (p 0.7). ZA2G is related to tryptophan metabolism, which is a main serotonin synthesis pathway. K2C1 is involved in the kinin-kallikrein system, which produces bradykinin, an anti-inflammatory mediator in the brain. Our results suggest that the two protein candidates are related to inflammation and that MDD is highly associated with inflammation. Finally, since all subjects in the two groups were taking antidepressants, our results suggest that the identified biomarkers could determine the presence or absence of illness and could be used to monitor therapeutic effects.Epitope peptides are not suitable for nasal administration immunity due to their poor immunogenicity and low delivery efficiency. Here, we reported an intranasal self-assembled nanovaccine (I-OVA NE), which was loaded with the peptides IKVAV-OVA257-264 (I-OVA), a laminin peptide (Ile-Lys-Val-ala-Val, IKVAV) and OVA257-264 epitope conjugated peptide. This nanovaccine with I-OVA at a concentration of 4 mg/mL showed the average particle size of 30.37 ± 2.49 nm, zeta potential of -16.67 ± 1.76 mV, and encapsulation rate of 84.07 ± 7.59%. Moreover, the mucin did not alter its stability (size, PdI and zeta potential). And it also had no obvious acute pathological changes neither in the nasal mucosa nor lung tissues after nasal administration. Meanwhile, the antigen uptake of I-OVA NE was promoted, and the nasal residence time was also prolonged in vivo. Besides, the uptake rate of this nanovaccine was obviously higher than that of free I-OVA (P less then 0.001) after blocking by the integrin antibody, suggesting that the binding of IKVAV to integrin is involved in the epitope peptide uptake. Importantly, this nanovaccine enhanced peptide-specific CD8+T cells exhibiting OVA257-264-specific CTL activity and Th1 immune response, leading to the induction of the protective immunity in E.G7-OVA tumor-bearing mice. Overall, these data indicate that I-OVA NE can be an applicable strategy of tumor vaccine development.Designing clinical applicable polymeric composite scaffolds for auricular cartilage tissue engineering requires appropriate mechanical strength and biological characteristics. In this study, silk fiber-based scaffolds co-reinforced with poly-L-lactic acid porous microspheres (PLLA PMs) combined with either Bombyx mori (Bm) or Antheraea pernyi (Ap) silk fibers were fabricated as inspired by the "steel bars reinforced concrete" structure in architecture and their chondrogenic functions were also investigated. We found that the Ap silk fiber-based scaffolds reinforced by PLLA PMs (MAF) exhibited superior physical properties (the mechanical properties in particular) as compared to the Bm silk fiber-based scaffolds reinforced by PLLA PMs (MBF). Furthermore, in vitro evaluation of chondrogenic potential showed that the MAF provided better cell adhesion, viability, proliferation and GAG secretion than the MBF. Therefore, the MAF are promising in auricular cartilage tissue engineering and relevant plastic surgery-related applications.Transesterification of starch with methyl betainate was studied for the first time, both in aprotic media and in solid state, and both under alkaline and acidic conditions. Betaine hydrochloride was first esterified in methanol, attaining a conversion of 86%. Starch was then converted into starch betainate in either N,N-dimethylformamide or dimethyl sulfoxide, and using sulfuric acid as catalyst or pre-activating the polymer in NaOH/ethanol. Furthermore, solid-state transesterification was carried out in a ball mill, for which sulfuric acid was replaced with the less corrosive sulfamic acid. Cationic starch esters were characterised by 1H and 13C NMR spectroscopy, infrared spectroscopy, thermogravimetric analysis, viscometry, optical microscopy (in water) and scanning electron microscopy (dry). In solution, the process attained degrees of substitution up to 0.4. No by-products, dehydration, oxidation or colouring were detected, but starch underwent severe depolymerization in wet media. In solid state, whilst the resulting degree of substitution was lower, degradation was minimal. In any case, transesterification, with its variety of possibilities, yields cationic starches that offer a promising alternative to conventional ethers.Chitosan (CS) and poly (ε-caprolactone) (PCL) are two most usable polymers in biomedical applications. In this study, chitosan has been modified and incorporated with poly (ε-caprolactone) to fabricate bone tissue engineering scaffold. Moreover, hydroxyapatite nanoparticles were added to enhance bioactivity and mechanical properties of scaffold. Bulk and fibrous comparative results showed significant effect of fiber diameter and distribution on mechanical properties. Moreover, the incorporation of chitosan-g-poly (ε-caprolactone) (CS-g-PCL) significantly decreases fiber diameter of pure PCL scaffold. Furthermore, both CS-g-PCL and nHA enhance mineralization and degradation of the scaffold soaked in simulated body fluid (SBF) and phosphate buffered saline (PBS), respectively. In vitro cytocompatibility assays also confirmed high cell viability and proliferation on the samples. EX 527 price Taken together, the results suggest that the microfabricated nanocomposite scaffolds could be used in bone tissue engineering.

Autoři článku: Potterparrott5378 (Hunt Pugh)