Diazmalik1941

Z Iurium Wiki

Verze z 3. 10. 2024, 19:17, kterou vytvořil Diazmalik1941 (diskuse | příspěvky) (Založena nová stránka s textem „Malaria is a mosquito-borne disease that results in millions of cases and deaths annually. The development of a fast computational method that identifies s…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Malaria is a mosquito-borne disease that results in millions of cases and deaths annually. The development of a fast computational method that identifies secretory proteins of the malaria parasite is important for research on antimalarial drugs and vaccines. Thus, a method was developed to identify the secretory proteins of malaria parasites. In this method, a reduced alphabet was selected to recode the original protein sequence. A feature synthesis method was used to synthesise three different types of feature information. Finally, the random forest method was used as a classifier to identify the secretory proteins. In addition, a web server was developed to share the proposed algorithm. Experiments using the benchmark dataset demonstrated that the overall accuracy achieved by the proposed method was greater than 97.8% using the 10-fold cross-validation method. Furthermore, the reduced schemes and characteristic performance analyses are discussed.Visualization recommendation (VisRec) systems provide users with suggestions for potentially interesting and useful next steps during exploratory data analysis. These recommendations are typically organized into categories based on their analytical actions, i.e., operations employed to transition from the current exploration state to a recommended visualization. However, despite the emergence of a plethora of VisRec systems in recent work, the utility of the categories employed by these systems in analytical workflows has not been systematically investigated. Our paper explores the efficacy of recommendation categories by formalizing a taxonomy of common categories and developing a system, Frontier, that implements these categories. Using Frontier, we evaluate workflow strategies adopted by users and how categories influence those strategies. Participants found recommendations that add attributes to enhance the current visualization and recommendations that filter to sub-populations to be comparatively most useful during data exploration. Our findings pave the way for next-generation VisRec systems that are adaptive and personalized via carefully chosen, effective recommendation categories.During the detailed design phase of an aerospace program, one of the most important consistency checks is to ensure that no two distinct objects occupy the same physical space. selleckchem Since exact geometrical modeling is usually intractable, geometry models are discretized, which often introduces small interferences not present in the fully detailed model. In this paper, we focus on computing the depth of the interference, so that these false positive interferences can be removed, and attention can be properly focused on the actual design. Specifically, we focus on efficiently computing the penetration depth between two polyhedra, which is a well-studied problem in the computer graphics community. We formulate the problem as a constrained five-variable global optimization problem, and then derive an equivalent unconstrained, 2-variable nonsmooth problem. To solve the optimization problem, we apply a popular stochastic multistart optimization algorithm in a novel way, which exploits the advantages of each problem formulation simultaneously. Numerical results for the algorithm, applied to 14 randomly generated pairs of penetrating polytopes, illustrate both the effectiveness and efficiency of the method.We introduce the problem of clustering the set of vertices in a given 3D mesh. The problem is motivated by the need for value engineering in architectural projects. We first derive a max-norm based metric to estimate the geometric disparity between a given pair of vertices, and characterize the problem in terms of this measure. We show that this distance can be computed by using Sequential Quadratic Programming (SQP). Next we introduce two different algorithms for clustering the set of vertices on a given mesh, respectively based on two disparity measurements max-norm and L2-norm based metric. An equivalence is established between mesh vertices and physical joints in an architectural mesh. By replacing individual joints by their equivalent cluster representative, the number of unique joints in the facade mesh, and therefore the fabrication cost, is dramatically reduced. Finally, we present an algorithm for remeshing a given surface in order to further reduce the number of joint clusters. The framework is tested for a set of real-world architectural surfaces to illustrate the effectiveness and utility of our approach. Overall, this approach tackles the important problem reducing fabrication cost of joints without modifying the underlying connectivity that was specified by the architect.In this paper we demonstrate robust estimation of the model parameters of a fully-linear data-driven BRDF model from a reflectance map under known natural lighting. To regularize the estimation of the model parameters, we leverage the reflectance similarities within a material class. We approximate the space of homogeneous BRDFs using a Gaussian mixture model, and assign a material class to each Gaussian in the mixture model. We formulate the estimation of the model parameters as a non-linear maximum a-posteriori optimization, and introduce a linear approximation that estimates a solution per material class from which the best solution is selected. We demonstrate the efficacy and robustness of our method using the MERL BRDF database under a variety of natural lighting conditions, and we provide a proof-of-concept real-world experiment.Tracking body and hand motions in 3D space is essential for social and self-presence in augmented and virtual environments. Unlike the popular 3D pose estimation setting, the problem is often formulated as egocentric tracking based on embodied perception (e.g., egocentric cameras, handheld sensors). In this paper, we propose a new data-driven framework for egocentric body tracking, targeting challenges of omnipresent occlusions in optimization-based methods (e.g., inverse kinematics solvers). We first collect a large-scale motion capture dataset with both body and finger motions using optical markers and inertial sensors. This dataset focuses on social scenarios and captures ground truth poses under self-occlusions and body-hand interactions. We then simulate the occlusion patterns in head-mounted camera views on the captured ground truth using a ray casting algorithm and learn a deep neural network to infer the occluded body parts. Our experiments show that our method is able to generate high-fidelity embodied poses by applying the proposed method to the task of real-time egocentric body tracking, finger motion synthesis, and 3-point inverse kinematics.When designing infographics, general users usually struggle with getting desired color palettes using existing infographic authoring tools, which sometimes sacrifice customizability, require design expertise, or neglect the influence of elements? spatial arrangement. We propose a data-driven method that provides flexibility by considering users? preferences, lowers the expertise barrier via automation, and tailors suggested palettes to the spatial layout of elements. We build a recommendation engine by utilizing deep learning techniques to characterize good color design practices from data, and further develop InfoColorizer, a tool that allows users to obtain color palettes for their infographics in an interactive and dynamic manner. To validate our method, we conducted a comprehensive four-part evaluation, including case studies, a controlled user study, a survey study, and an interview study. The results indicate that InfoColorizer can provide compelling palette recommendations with adequate flexibility, allowing users to effectively obtain high-quality color design for input infographics with low effort.Spatially localized deformation components are very useful for shape analysis and synthesis in 3D geometry processing. Several methods have recently been developed, with an aim to extract intuitive and interpretable deformation components. However, these techniques suffer from fundamental limitations especially for meshes with noise or large-scale nonlinear deformations, and may not always be able to identify important deformation components. In this paper we propose a novel mesh-based variational autoencoder architecture that is able to cope with meshes with irregular connectivity and nonlinear deformations. To help localize deformations, we introduce sparse regularization along with spectral graph convolutional operations. Through modifying the regularization formulation and allowing dynamic change of sparsity ranges, we improve the visual quality and reconstruction ability. Our system also provides a nonlinear approach to reconstruction of meshes using the extracted basis, which is more effective than the current linear combination approach. We further develop a neural shape editing method, achieving shape editing and deformation component extraction in a unified framework and ensuring plausibility of the edited shapes. Extensive experiments show that our method outperforms state-of-the-art methods in both qualitative and quantitative evaluations. We also demonstrate the effectiveness of our method for neural shape editing.In real-world applications, it is important for machine learning algorithms to be robust against data outliers or corruptions. In this paper, we focus on improving the robustness of a large class of learning algorithms that are formulated as low-rank semi-definite programming (SDP) problems. Traditional formulations use the square loss, which is notorious for being sensitive to outliers. We propose to replace this with more robust noise models, including the l1-loss and other nonconvex losses. However, the resultant optimization problem becomes difficult as the objective is no longer convex or smooth. To alleviate this problem, we design an efficient algorithm based on majorization-minimization. The crux is on constructing a good optimization surrogate, and we show that this surrogate can be efficiently obtained by the alternating direction method of multipliers (ADMM). By properly monitoring ADMM's convergence, the proposed algorithm is empirically efficient and also theoretically guaranteed to converge to a critical point. Extensive experiments are performed on four machine learning applications using both synthetic and real-world data sets. Results show that the proposed algorithm is not only fast but also has better performance than the state-of-the-arts.Mammogram mass detection is crucial for diagnosing and preventing breast cancers in clinical practice. The complementary effect of multi-view mammogram images provides valuable information about the breast anatomical prior structure and is of great significance in digital mammography interpretation. However, unlike radiologists who can utilize reasoning ability to identify masses, how to endow existing models with capability of multi-view reasoning is vital in clinical diagnosis. In this paper, we propose an Anatomy-aware Graph convolutional Network (AGN), which is tailored for mammogram mass detection and endows existing methods with multi-view reasoning ability. The proposed AGN consists of three steps. Firstly, we introduce a Bipartite Graph convolutional Network (BGN) to model intrinsic geometric and semantic relations of ipsilateral views. Secondly, considering that visual asymmetry of bilateral views is widely adopted in clinical practice to assist the diagnosis of breast lesions, we propose an Inception Graph convolutional Network (IGN) to model structural similarities of bilateral views.

Autoři článku: Diazmalik1941 (Wynn Drachmann)