Eliasensinclair7549

Z Iurium Wiki

Verze z 3. 10. 2024, 18:21, kterou vytvořil Eliasensinclair7549 (diskuse | příspěvky) (Založena nová stránka s textem „and during FD events, where some bacterial groups and their activity may influence the growth and flowering of native plants, and therefore, the ecology an…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

and during FD events, where some bacterial groups and their activity may influence the growth and flowering of native plants, and therefore, the ecology and trophic webs in Atacama Desert. Copyright © 2020 Astorga-Eló, Zhang, Larama, Stoll, Sadowsky and Jorquera.Bacillus subtilis releases a broad range of volatile secondary metabolites, which are considered as long- and short distance infochemical signals mediating inter- and intra-specific processes. In addition, they often show antimicrobial or antifungal activities. This review attempts to summarize yet known volatile secondary metabolites produced and emitted by Bacillus subtilis isolates focusing on the structural diversity and distribution patterns. Using in vitro volatile-collection systems, 26 strains of B. subtilis isolated from different habitats were found to produce in total 231 volatile secondary metabolites. These volatile secondary metabolites comprised mainly hydrocarbons, ketones, alcohols, aldehydes, ester, acids, aromatics, sulfur- and nitrogen-containing compounds. Reviewed data revealed to a great extent isolate-specific emission patterns. The production and release of several volatile bioactive compounds was retained in isolates of the species B. subtilis, while volatiles without a described function seemed to be isolate-specifically produced. Detailed analysis, however, also indicated that the original data were strongly influenced by insufficient descriptions of the bacterial isolates, heterogeneous and poorly documented culture conditions as well as sampling techniques and inadequate compound identification. In order to get deeper insight into the nature, diversity, and ecological function of volatile secondary metabolites produced by B. subtilis, it will be necessary to follow well-documented workflows and fulfill state-of-the-art standards to unambiguously identify the volatile metabolites. Future research should consider the dynamic of a bacterial culture leading to differences in cell morphology and cell development. Single cell investigations could help to attribute certain volatile metabolites to defined cell forms and developmental stages. Copyright © 2020 Kai.Our previous study showed that the intake of meat proteins dynamically affected fecal microbial composition. However, the digestion of processed meat proteins in vivo and its relationship with gut microbiota and host remain unclear. In this study, we collected cecal contents and intestinal tissue from the mice fed with casein, soybean protein (SP), and four processed pork proteins for 8 months, and analyzed the amino acid (AA) files, cecum microbial composition and metabolites, and intestinal morphology. Dry-cured pork protein and stewed pork protein (SPP) groups had significantly higher total AA content in gut content than the other groups, but the content of the SPP group was relatively lower in the serum. The microbial composition of the processed meat protein groups differed from the casein or SP group, which is consistent with changes in AA composition. Emulsion sausage protein and SP diets upregulated the microbial AA metabolism, energy metabolism, signaling molecules and interaction, translation, and digestive system function but downregulated the microbial membrane transport, signal transduction and cell motility function compared to the casein diet. The SPP diets increased concentrations of acetate, propionate, butyrate, and isovalerate by specific gut microbes, but it decreased the relative abundance of Akkermansia. Moreover, the mice fed SP diet had relatively lower crypt depth, higher villus height and V/C ratio in duodenum, with the longer small intestines and the heavier cecum than other diets. These results suggested that processing methods altered bioavailability of meat proteins, which affected the intestinal morphology and the cecum microbial composition and function. Copyright © 2020 Xie, Wang, Zhao, Zhou and Li.Because of the nutritional ecology of dung- and carrion-feeding, bacteria are the integral part of Lucilia sericata life cycle. Nevertheless, the disinfected larvae of the blowfly are applied to treat human chronic wounds in a biosurgery named maggot debridement therapy (MDT). To realize the effects of location/diet on the gut bacteria, to infer the role of bacteria in the blowfly ecology plus in the MDT process, and to disclose bacteria circulating horizontally in and vertically between generations, bacterial communities associated with L. sericata specimens from various sources were investigated using culture-based and culture-independent methods. In total, 265 bacteria, including 20 families, 28 genera, and 40 species, were identified in many sources of the L. sericata. Culture-dependent method identified a number of 144 bacterial isolates, including 21 species, in flies reared in an insectary; specimens were collected from the field, and third-instar larvae retrieved from chronic wounds of patients. Metag aerobic gut bacteria, metagenomic method enabled us to identify bacteria directly from the tissues without any need for cultivation and to facilitate the identification of anaerobic and unculturable bacteria. These findings are planned to pave the way for further research to determine the role of each bacterial species/strain in the insect ecology, as well as in antimicrobial, antibiofilm, anti-inflammatory, and wound healing activities. Copyright © 2020 Maleki-Ravasan, Ahmadi, Soroushzadeh, Raz, Zakeri and Dinparast Djadid.Lake Chaohu, one of the five largest freshwater lakes in China, has been suffering from severe cyanobacterial blooms in the summer for many years. Cyanophages, the viruses that specifically infect cyanobacteria, play a key role in modulating cyanobacterial population, and thus regulate the emergence and decline of cyanobacterial blooms. Here we report a long-tailed cyanophage isolated from Lake Chaohu, termed Mic1, which specifically infects the cyanobacterium Microcystis aeruginosa. Mic1 has an icosahedral head of 88 nm in diameter and a long flexible tail of 400 nm. It possesses a circular genome of 92,627 bp, which contains 98 putative open reading frames. Genome sequence analysis enabled us to define a novel terminase large subunit that consists of two types of intein, indicating that the genome packaging of Mic1 is under fine control via posttranslational maturation of the terminase. Moreover, phylogenetic analysis suggested Mic1 and mitochondria share a common evolutionary origin of DNA polymerase γ gene. All together, these findings provided a start-point for investigating the co-evolution of cyanophages and its cyanobacterial hosts. Copyright © 2020 Yang, Jin, Wang, Li, Zhang, Cui, Jiang, Chen, Wu, Zhou and Li.Preterm birth (PTB) is defined as the birth of an infant before 37 weeks of gestational age. It is the leading cause of perinatal morbidity and mortality worldwide. In this study, we present a comprehensive meta-analysis of vaginal microbiome in PTB. We integrated raw longitudinal 16S rRNA vaginal microbiome data from five independent studies across 3,201 samples and were able to gain new insights into the vaginal microbiome state in women who deliver preterm in comparison to those who deliver at term. We found that women who deliver prematurely show higher within-sample variance in vaginal microbiome abundance, with the most significant difference observed during the first trimester. Modeling the data longitudinally revealed a number of microbial genera as associated with PTB, including several that were previously known and two newly identified by this meta-analysis Olsenella and Clostridium sensu stricto. New hypotheses emerging from this integrative analysis can lead to novel diagnostics to identify women who are at higher risk for PTB and potentially inform new therapeutic interventions. Copyright © 2020 Kosti, Lyalina, Pollard, Butte and Sirota.The neuromodulator oxytocin, since its first synthesis by du Vigneaud in 1953, has mainly been associated with beneficial physiological effects, as well as positive social and emotional behaviors. This overall positive picture of oxytocin as the "love-, cuddle-, or bonding-hormone" has repeatedly been challenged since then. Oxytocin-induced effects that would be perceived as negative by the individual, such as increased anxiety or potentiation of stress-induced ACTH release, as well as the regulation of negative approach-related emotions, such as envy and schadenfreude (gloating) have been described. The general consent is that oxytocin, instead of acting unidirectional, induces changes in the salience network to shift the emphasis of emotional contexts, and therefore can, e.g., produce both anxiolytic as well as anxiogenic behavioral outcomes. However, the underlying mechanisms leading to alterations in the salience network are still unclear. With the aim to understand the manifold effects of oxytocin on a cellular/molecular level, a set of oxytocin receptor-coupled signaling cascades and downstream effectors regulating transcription and translation has been identified. Those oxytocin-driven effectors, such as MEF2 and CREB, are known modulators of the neuronal and glial cytoarchitecture. We hypothesize that, by determining cellular morphology and connectivity, MEF2 is one of the key factors that might contribute to the diverse behavioral effects of oxytocin. Copyright © 2020 Jurek and Meyer.Mild traumatic brain injury (mTBI) causes persisting post-concussion syndrome for many patients without abnormalities on conventional neuroimaging. Currently, there is no method for identifying at-risk cases at an early stage for directing concussion management and treatment. SNTF is a calpain-derived N-terminal proteolytic fragment of spectrin (αII-spectrin1-1176) generated in damaged axons following mTBI. PIK-75 mw Preliminary human studies suggest that elevated blood SNTF on the day of mTBI correlates with white matter disruption and lasting brain dysfunction. Here, we further evaluated serum SNTF as a prognostic marker for persistent brain dysfunction in uncomplicated mTBI patients treated in a Level I trauma center emergency department. Compared with healthy controls (n = 40), serum SNTF increased by 92% within 24 h of mTBI (n = 95; p less then 0.0001), and as a diagnostic marker exhibited 100% specificity and 37% sensitivity (AUC = 0.87). To determine whether the subset of mTBI cases positive for SNTF preferent Wewerka, Hamel, Smith and Zwank.Background Parkinson's disease (PD) is a neurodegenerative disease in which the neostriatum, including the caudate nucleus (CN) and putamen (PU), has an important role in the pathophysiology. However, conventional magnetic resonance imaging (MRI) lacks sufficient specificity to diagnose PD. Therefore, the study's aim was to investigate the feasibility of using a radiomics approach to distinguish PD patients from healthy controls on T2-weighted images of the neostriatum and provide a basis for the clinical diagnosis of PD. Methods T2-weighted images from 69 PD patients and 69 age- and sex-matched healthy controls were obtained on the same 3.0T MRI scanner. Regions of interest (ROIs) were manually placed at the CN and PU on the slices showing the largest respective sizes of the CN and PU. We extracted 274 texture features from each ROI and then used the least absolute shrinkage and selection operator regression to perform feature selection and radiomics signature building to identify the CN and PU radiomics signatures consisting of optimal features.

Autoři článku: Eliasensinclair7549 (Mathiassen Holmes)