Burrisbrix2654
Metal nanoparticles have a substantial impact across different fields of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver nanoparticles are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize silver nanoparticles often do not result in well-defined products, the main obstacles being high polydispersity or a lack of particle size tunability. We describe an automated approach to on-demand synthesis of adjustable particles with mean radii of 3 and 5 nm using the polyol route. The polyol process is a promising route for silver nanoparticles e.g., to be used as reference materials. We characterised the as-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties.Accurate evaluation of combustion enthalpy is of high scientific and industrial importance. Although ab-initio computation of the heat of reactions is one of the promising and well-established approaches in computational chemistry, reliable and precise computation of heat of combustion reactions by ab-initio methods is surprisingly scarce in the literature. A handful of works carried out for this purpose report significant inconsistencies between the computed and experimentally determined combustion enthalpies and suggest empirical corrections to improve the accuracy of the ab-initio predicted data. Enzalutamide The main aim of the present study is to investigate the reasons behind those reported inconsistencies and propose guidelines for a high-accuracy estimation of heat of reactions via ab-initio computations. We show comparably accurate prediction of combustion enthalpy of 40 organic molecules based on a DSD-PBEP86 double-hybrid density functional theory approach and CCSD(T)-F12 coupled-cluster computations, with mean unsigned errors with respect to experimental data being below 0.5% for both methods.This study aimed to examine the association between meeting 24-h movement guidelines and cardiometabolic health in Chilean adults. We used cross-sectional data of 2618 adults from the Chilean National Health Survey 2016-2017. Meeting the 24-h movement guidelines was defined as ≥ 600 MET-min/week of physical activity; ≤ 8 h/day of sitting time; and 7 to 9 h/day of sleep duration. Cardiometabolic health indicators were body mass index, waist circumference, high triglycerides, high blood pressure, type 2 diabetes, metabolic syndrome, and risk of cardiovascular disease in a 10-year period. Meeting none out of three 24-h movement guidelines (vs all three) was associated with higher odds of overweight/obesity (OR 1.67; 95%CI 1.45 to 1.89), high waist circumference (1.65; 1.40 to 1.90), hypertension (2.88; 2.23 to 3.53), type 2 diabetes (1.60; 1.26 to 1.94), metabolic syndrome (1.97; 1.54 to 2.40) and risk of cardiovascular disease (1.50; 1.20, 1.80). Meeting one guideline (vs three) was associated with higher odds of five of out seven cardiometabolic indicators. Our study found that the composition of movement behaviors within a 24-h period may have important implications for cardiometabolic health.The Coronavirus disease 2019 (COVID-19) pandemic-caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)- has posed a global threat and presented with it a multitude of economic and public-health challenges. Establishing a reliable means of readily available, rapid diagnostic testing is of paramount importance in halting the spread of COVID-19, as governments continue to ease lockdown restrictions. The current standard for laboratory testing utilizes reverse transcription quantitative polymerase chain reaction (RT-qPCR); however, this method presents clear limitations in requiring a longer run-time as well as reduced on-site testing capability. Therefore, we investigated the feasibility of a reverse transcription looped-mediated isothermal amplification (RT-LAMP)-based model of rapid COVID-19 diagnostic testing which allows for less invasive sample collection, named SaliVISION. This novel, two-step, RT-LAMP assay utilizes a customized multiplex primer set specifically targeting SARS-CoV-2 and a visual report system that is ready to interpret within 40 min from the start of sample processing and does not require a BSL-2 level testing environment or special laboratory equipment. When compared to the SalivaDirect and Thermo Fisher Scientific TaqPath RT-qPCR testing platforms, the respective sensitivities of the SaliVISION assay are 94.29% and 98.28% while assay specificity was 100% when compared to either testing platform. Our data illustrate a robust, rapid diagnostic assay in our novel RT-LAMP test design, with potential for greater testing throughput than is currently available through laboratory testing and increased on-site testing capability.To combat the various DNA lesions and their harmful effects, cells have evolved different strategies, collectively referred as DNA damage response (DDR). The DDR largely relies on intranuclear protein networks, which sense DNA lesions, recruit DNA repair enzymes, and coordinates several aspects of the cellular response, including a temporary cell cycle arrest. In addition, external cues mediated by the surface EGF receptor (EGFR) through downstream signaling pathways contribute to the cellular DNA repair capacity. However, cell cycle progression driven by EGFR activation should be reconciled with cell cycle arrest necessary for effective DNA repair. Here, we show that in damaged cells, the expression of Mig-6 (mitogen-inducible gene 6), a known regulator of EGFR signaling, is reduced resulting in heightened EGFR phosphorylation and downstream signaling. These changes in Mig-6 expression and EGFR signaling do not occur in cells deficient of Mre-11, a component of the MRN complex, playing a central role in double-strand break (DSB) repair or when cells are treated with the MRN inhibitor, mirin. RNAseq and functional analysis reveal that DNA damage induces a shift in cell response to EGFR triggering that potentiates DDR-induced p53 pathway and cell cycle arrest. These data demonstrate that the cellular response to EGFR triggering is skewed by components of the DDR, thus providing a plausible explanation for the paradox of the known role played by a growth factor such as EGFR in the DNA damage repair.Several concerns regarding the safety of face masks use have been propounded in public opinion. The objective of this review is to examine if these concerns find support in the literature by providing a comprehensive overview of physiological responses to the use of face masks. We have performed a systematic review, pairwise and network meta-analyses to investigate physiological responses to the use of face masks. The study has been registered with PROSPERO (C RD42020224791). Obtained results were screened using our exclusion and inclusion criteria. Meta-analyses were performed using the GeMTC and meta R packages. We have identified 26 studies meeting our inclusion and exclusion criteria, encompassing 751 participants. The use of face masks was not associated with significant changes in pulsoxymetrically measured oxygen saturation, even during maximal-effort exercises. The only significant physiological responses to the use of face masks during low-intensity activities were a slight increase in heart rate, mildly elevated partial pressure of carbon dioxide (not meeting criteria for hypercarbia), increased temperature of facial skin covered by the mask, and subsequent increase of the score in the rating of heat perception, with N95 filtering facepiece respirators having a greater effect than surgical masks. In high-intensity conditions, the use of face masks was associated with decreased oxygen uptake, ventilation, and RR. Face masks are safe to use and do not cause significant alterations in human physiology. The increase in heart rate stems most likely from increased respiratory work required to overcome breathing resistance. The increase in carbon dioxide is too small to be clinically relevant. An increased rating of heat perception when using face masks results from higher temperature of facial skin covered by the mask.Oregano (Origanum vulgare L.) is a rich source of biologically active components such as phenolic compounds. Here, seven pot grown O. vulgare accessions belonging to three subspecies (subsp. virens, subsp. vulgare and subsp. gracile) were investigated for their content in sixteen bioactive phenolic compounds as well as their antioxidant capacities (DPPH• and FRAP tests), total phenolic content (TPC) and total flavonoid content (TFC) in order to identify the most suitable ones on an industrial level. HPLC analyses showed that rosmarinic acid (659.6-1646.9 mg/100 g DW) was by far the most abundant constituent, followed by luteolin (46.5-345.4 mg/100 g DW), chicoric acid (36.3-212.5 mg/100 g DW), coumarin (65.7-193.9 mg/100 g DW) and quercetin (10.6-106.1 mg/100 g DW), with variability in concentration depending on the accession and subspecies. The highest level of rosmarinic acid and TPC was obtained from Ardabil accession (subsp. virens). There was a significant and positive correlation between rosmarinic acid and antioxidant activity (r = 0.46). TFC significantly correlated to TPC (r = 0.57) as well as to chicoric acid (r = 0.73). Cluster (CA) and principal component (PCA) analyses classified the investigated accessions in three different groups. Such natural variabilities in phenolics provide the possibility of using elite plants for nutraceutical and pharmaceutical industries and domestication of highly antioxidative accessions of oregano.There is a lack of information highlighting the possible association between the genomic subtypes of enteropathogenic Escherichia coli (EPEC) on environmental enteric dysfunction (EED) and on linear growth during childhood. Genomic subtypes of EPEC from stool samples collected from 1705 children enrolled in the MAL-ED birth cohort were detected by TaqMan Array Cards. We measured site-specific incidence rate by using Poisson regression models, identified the risk factors and estimated the association of genomic subtypes of EPEC with the composite EED score and linear growth at 24 months of age. In general, the highest incidence rate (39%) was found among children having aEPEC infection, which was the greatest in Tanzania (54%). Exclusive breastfeeding and having an improved sanitation facility were found to be protective factors against EPEC infection. In the multivariate models, in overall effect after adjusting for the potential covariates aEPEC showed strong positive associations with the EED scores and tEPEC showed a positive association with poor linear growth at 24 months of age. Our analyses may lay the cornerstone for a prospective epidemiologic investigation for a potential vaccine development aimed at reducing the burden of EPEC infections and combat childhood malnutrition.Legionella longbeachae is an environmental bacterium that is the most clinically significant Legionella species in New Zealand (NZ), causing around two-thirds of all notified cases of Legionnaires' disease. Here we report the sequencing and analysis of the geo-temporal genetic diversity of 54 L. longbeachae serogroup 1 (sg1) clinical isolates, derived from cases from around NZ over a 22-year period, including one complete genome and its associated methylome. The 54 sg1 isolates belonged to two main clades that last shared a common ancestor between 95 BCE and 1694 CE. There was diversity at the genome-structural level, with large-scale arrangements occurring in some regions of the chromosome and evidence of extensive chromosomal and plasmid recombination. This includes the presence of plasmids derived from recombination and horizontal gene transfer between various Legionella species, indicating there has been both intra- and inter-species gene flow. However, because similar plasmids were found among isolates within each clade, plasmid recombination events may pre-empt the emergence of new L.