Jenkinsmclaughlin7853
Unfavorable alterations of the commensal gut microbiota and dysbacteriosis is a major health problem in the poultry industry. Understanding how dietary intervention alters the microbial ecology of broiler chickens is important for prevention strategies. A trial was conducted with 672 Ross 308 day-old male broilers fed a basic diet (no additives, control) or the basic diet supplemented with 500 mg/kg encapsulated butyrate or 68 mg/kg salinomycin. Enteric challenge was induced by inclusion of 50 g/kg rye in a grower diet and oral gavage of a 10 times overdose of a vaccine against coccidiosis. Compared to control and butyrate-supplemented birds, salinomycin supplementation alleviated growth depression. Compared to butyrate and non-supplemented control, salinomycin increased potentially beneficial Ruminococcaceae and reduced potentially pathogenic Enterobacteriaceae and counts of Lactobacillus salivarius and Clostridium perfringens. Further, salinomycin supplementation was accompanied by a pH decrease and succinic acid increase in ceca, while coated butyrate (0.5 g/kg) showed no or limited effects. Salinomycin alleviated growth depression and maintained intestinal homeostasis in the challenged broilers, while butyrate in the tested concentration showed limited effects. Thus, further investigations are required to identify optimal dietary inclusion rates for butyrate used as alternative to ionophore coccidiostats in broiler production.This study aimed to evaluate the effect of the incorporation of untreated grape stalks (UGS) and fungi-treated grape stalks (Lentinula edodes, TGS) in rabbits' diets. The control group was fed with a control diet without grape stalks (C), two experimental groups were fed on diets with 5% and 10% incorporation of UGS (5UGS and 10UGS), and two with 5% and 10% incorporation of TGS (5TGS and 10TGS). Rabbits fed with TGS diets showed higher daily weight gain (p = 0.034), feed conversion rate (p = 0.002), carcass weight (p = 0.038), and reference carcass weight (p = 0.03) when compared to the control diet. Moreover, animals fed with TGS diets showed an increase in the caecum (p = 0.015) and small intestine (p = 0.021) lengths and in the total volatile fatty acid content (p = 0.005) compared to animals fed UGS diets. Blood triglyceride levels were lower in animals fed with TGS diets compared to UGS (p = 0.005) and C (p ≤ 0.001) diets (12% and 19% lower, respectively), and a trend to lower cholesterol levels was observed (p = 0.071). Meat from rabbits fed with TGS diets had higher levels of linoleic acid, γ-linolenic, ∑ω-6, ∑PUFA, and ∑PUFA/∑SFA ratio compared to rabbits fed with the C diet. Results indicated that grape stalks (UGS and TGS) could be effectively used as an alternative raw material in rabbits' diets without compromising animal performance.This study determined the effect of feeding Moringa oleifera (MO) leaf extracts to lactating ewes on the physicochemical composition of their milk and yogurt during storage (4 °C for 14 days) and the sensory acceptance of the yogurt. Over 45 days, 24 multiparous lactating Pelibuey and Katahdin ewes (two days in lactation) were randomly assigned to four groups MO-0, basal diet (BD) + 0 mL MO; MO-20, BD + 20 mL MO; MO-40, BD + 40 mL MO; and MO-60, BD + 60 mL MO. In the milk, an increase of 6% in protein, 26% in leucine, 14% in ash, and 1% in the pH (6.71) was observed with MO-60. The density values decreased by 0.3% at a higher dose of MO compared to MO-0, while the nonfat solids (NFS) in the milk were similar between the treatments. In the yogurt, an increase of 5% in protein, 113% in leucine (MO-20), 9% in NFS, and a reduction of 2% in moisture with MO-60 was observed. The acidity reflected an inverse relationship to the pH, as did the moisture and NFS with MO-60. In conclusion, dietary supplementation with MO in lactating ewes did not have negative effects on the chemical composition of their yogurt during storage (14 days). Overall, feeding sheep with 20 mL of MO positively influenced the physicochemical composition of their milk and yogurt during storage.This study aimed to investigate the effect of fiber-rich rye and rapeseed meal (RSM) compared to wheat and soybean meal (SBM) on fiber digestibility and the composition and metabolic activity of intestinal microbiota. At weaning, 88 piglets were allocated to four feeding groups wheat/SBM, wheat/RSM, rye/SBM, and rye/RSM. Dietary inclusion level was 48% for rye and wheat, 25% for SBM, and 30% for RSM. Piglets were euthanized after 33 days for collection of digesta and feces. Samples were analyzed for dry matter and non-starch-polysaccharide (NSP) digestibility, bacterial metabolites, and relative abundance of microbiota. Rye-based diets had higher concentrations of soluble NSP than wheat-based diets. RSM-diets were higher in insoluble NSP compared to SBM. Rye-fed piglets showed a higher colonic and fecal digestibility of NSP (p less then 0.001, p = 0.001, respectively). RSM-fed piglets showed a lower colonic and fecal digestibility of NSP than SBM-fed piglets (p less then 0.001). Rye increased jejunal and colonic concentration of short-chain fatty acids (SCFA) compared to wheat (p less then 0.001, p = 0.016, respectively). RSM-fed pigs showed a lower jejunal concentration of SCFA (p = 0.001) than SBM-fed pigs. Relative abundance of Firmicutes was higher (p = 0.039) and of Proteobacteria lower (p = 0.002) in rye-fed pigs compared to wheat. RSM reduced Firmicutes and increased Actinobacteria (jejunum, colon, feces p less then 0.050), jejunal Proteobacteria (p = 0.019) and colonic Bacteroidetes (p = 0.014). EMD638683 supplier Despite a similar composition of the colonic microbiota, the higher amount and solubility of NSP from rye resulted in an increased fermentative activity compared to wheat. The high amount of insoluble dietary fiber in RSM-based diets reduced bacterial metabolic activity and caused a shift toward insoluble fiber degrading bacteria. Further research should focus on host-microbiota interaction to improve feeding concepts with a targeted use of dietary fiber.Previous research to localize face areas in dogs' brains has generally relied on static images or videos. However, most dogs do not naturally engage with two-dimensional images, raising the question of whether dogs perceive such images as representations of real faces and objects. To measure the equivalency of live and two-dimensional stimuli in the dog's brain, during functional magnetic resonance imaging (fMRI) we presented dogs and humans with live-action stimuli (actors and objects) as well as videos of the same actors and objects. The dogs (n = 7) and humans (n = 5) were presented with 20 s blocks of faces and objects in random order. In dogs, we found significant areas of increased activation in the putative dog face area, and in humans, we found significant areas of increased activation in the fusiform face area to both live and video stimuli. In both dogs and humans, we found areas of significant activation in the posterior superior temporal sulcus (ectosylvian fissure in dogs) and the lateral occipital complex (entolateral gyrus in dogs) to both live and video stimuli. Of these regions of interest, only the area along the ectosylvian fissure in dogs showed significantly more activation to live faces than to video faces, whereas, in humans, both the fusiform face area and posterior superior temporal sulcus responded significantly more to live conditions than video conditions. However, using the video conditions alone, we were able to localize all regions of interest in both dogs and humans. Therefore, videos can be used to localize these regions of interest, though live conditions may be more salient.First-line therapy for cats with pyothorax consists of intravenous antibiotics, drainage of the septic pleural effusion and closed-chest lavage. Large-bore thoracostomy tubes are traditionally used for drainage, but case series indicate a comparable efficacy using small-bore tubes. In this retrospective study, we describe a new technique of sheath-guided small-bore (6 F) thoracostomy tubes in cats with pyothorax and evaluate their efficacy and complications. Additionally, we compare outcomes between two treatment groups. Placement and use of the small-bore thoracostomy tubes described here has a low complication rate of 4% (3/67 tubes), and 53% (24/45) of the cats could be treated with thoracostomy tubes and closed-chest lavage according to the protocol. The success rate is reduced by 18% (8/45) due to deaths caused mainly by sepsis, 16% (7/45) due to structural diseases requiring surgery and a further 14% (6/43) due to lavage failures that could only be cured after additive therapy (thoracotomy or fibrinolysis). The long-term prognosis was very good, with a survival rate one year after discharge of 94% (30/32). We detected no effect on survival by early placement of bilateral thoracostomy tubes or closed-chest lavage with a heparinised solution. In conclusion, therapy of pyothorax with small-bore thoracostomy tubes is as successful as therapy with large- or medium-bore tubes.This review presents and analyzes recent scientific findings on the structure, physiology, and neurotransmission mechanisms of transient receptor potential (TRP) and their function in the thermoregulation of mammals. The aim is to better understand the functionality of these receptors and their role in maintaining the temperature of animals, or those susceptible to thermal stress. The majority of peripheral receptors are TRP cation channels formed from transmembrane proteins that function as transductors through changes in the membrane potential. TRP are classified into seven families and two groups. The data gathered for this review include controversial aspects because we do not fully know the mechanisms that operate the opening and closing of the TRP gates. Deductions, however, suggest the intervention of mechanisms related to G protein-coupled receptors, dephosphorylation, and ligands. Several questions emerge from the review as well. For example, the future uses of these data for controlling thermoregulatory disorders and the invitation to researchers to conduct more extensive studies to broaden our understanding of these mechanisms and achieve substantial advances in controlling fever, hyperthermia, and hypothermia.The effects of Payoya kid feeding systems on the fat-soluble vitamin (retinol/α-tocopherol) contents, fat content, fat color, and the oxidation index were evaluated to determine their potential for use as feeding system traceability tools. Four groups of Payoya kids (55 animals in total) fed milk exclusively were studied a group fed a milk replacer (MR) and three groups fed natural milk from dams reared with different management systems (mountain grazing (MG), cultivated meadow (CM) and total mixed ration (TMR)). Kids were slaughtered around one month of age and 8 kg of live weight. Kids from the MG and CM groups presented lower retinol (5.56 and 3.72 µg/mL) and higher α-tocopherol plasma (11.43 and 8.85 µg/mL) concentrations than those from the TMR and MR groups (14.98 and 22.47 µg/mL of retinol; 2.49 and 0.52 µg/mL of α-tocopherol, respectively) (p less then 0.001). With respect to fat, kids with a higher intramuscular fat percentage (CM and TMR groups) had lower retinol contents (16.52 and 15.99 µg/mL, respectively) than kids from the MG and MR groups (26.