Pottsgood5114

Z Iurium Wiki

Verze z 3. 10. 2024, 18:09, kterou vytvořil Pottsgood5114 (diskuse | příspěvky) (Založena nová stránka s textem „Three dimensional (3D) flower-like alpha-FeOOH nanomaterials were prepared by oil bath reflux method using FeSO4, urea, ethanol and water, and the products…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Three dimensional (3D) flower-like alpha-FeOOH nanomaterials were prepared by oil bath reflux method using FeSO4, urea, ethanol and water, and the products which were characterized by XRD, FT-IR and SEM techniques. The SEM images showed that the 3D flower-like samples consisted of nanorods with a length of 400-500 nm and a diameter of 40-60 nm. The catalytic performance of the samples was evaluated by catalytic degradation of diclofenac sodium using H2O2 as the oxidant under simulated visible light. The results showed that the as-prepared samples presented high efficient catalytic performances, and more than 99% of the initial diclofenac sodium (30 mg x L(-1)) was degraded in 90 min. A radical mechanism can be proposed for the catalytic degradation of diclofenac sodium solution.The paper used the method of iron copper catalyst reduction to degrade low concentrations of bromochloracetonitrile (BCAN) to lighten the damage to human being, which is a kind of disinfection by-products (DBPs) produced during the chlorination process of drinking water. The removal efficiency of BCAN and its influencing factors were investigated. The mechanism of degradation and kinetics were also explored. The results indicated that iron copper had a greater degradation ability towards BCAN, and the degradation rate of iron copper (mass ratio of 101) was 1.5 times that of the zero-valent iron. The removal of BCAN increased obviously with the increase of Fe/Cu dosage. When the initial concentration was set at 20 microg x L(-1), after a reaction time of 150 min, removal of BCAN was improved from 51.1% to 89.5% with the increase of iron copper (mass ratio of 101) dosage from 5 g x L(-1) to 10 g x L(-1). The temperature also had great impact on BCAN removal and the removal increased with the increase of temperature. Doxorubicin However, BCAN removal did not change a lot with the variation of the initial concentration of BCAN when it was at a low level. The BCAN degradation by iron copper catalytic-reduction followed the first-order kinetics model.Two different styles of grass swales were built in new Binhu region of Hefei city to monitor the flux and quality of the influent and effluent water under actual precipitation conditions, in order to evaluate the performance of water quality purification and pollution load control for roadway runoff. The results showed that both of the grass swales could effectively remove the pollutants such as TSS, COD, Pb, Cu, Cd, Zn in roadway runoff; the median EMC removal efficiencies of TSS and COD were 67.1%, 46.7% respectively,for facility I, and the median EMC removal efficiencies of TSS and COD were 78.6%, 58.6% respectively, for facility II; the concentrations of Pb, Cu, Zn in the effluent of facility II could meet the requirements of the surface water quality class V; release of nitrogen and phosphorus occurred in both facilities I and I[ in several rainfall events, mainly in heavy storms; the removal efficiencies of TP in the two grass swales were improved with the increase of influent concentration; the mean removal efficiencies of TP in facilities I and II were 14.7% and 45.4%, respectively; the load control performance of facility II for pollutants such as TSS, COD, TP, TN, NH4+ -N and NO3- -N was better than that of facility I; in the district with poor soil permeability and low ground slope, application of dry swale could achieve better performance in water quality control and pollution load reduction of roadway runoff.Stable isotope techniques provide a new approach to study soil water movement. The precipitation and the soil water from 0 to 100 cm soil layer in 4 kinds of typical vegetation types (forest, shrub forest, grassland and non-forest land) over the water source area of Yuanyang terrace were sampled, and their isotope compositions were analyzed, aimed to understand the characteristics of stable isotopes in different depth of the soil water. The results showed that the meteoric water line in the water source area of Yuanyang terrace was δD = 6.838 4δ(18)O-5.6921 (R2 = 0.8787, n = 20), the slope and intercept were less than the global atmospheric precipitation. The hydrogen and oxygen stable isotopes in the soil water of the 4 kinds of typical types was lower than the local meteoric water line side and the fluctuation of isotope value on surface soil profile was greater. With the increasing soil depth, the fluctuation of delta 18O value was smaller and smaller, especially in the 80-100 cm soil layer which was the most obvious. The delta 18O values of the deep soil water in forest and grassland were higher than that in the surface soil. while it was on the contrary in shrub forest and non-forest land.Analysis of the variation characteristics of different water bodies is the basis of applying isotopic tracer technique in regional water cycle research. Based on the samples of atmospheric precipitation, surface water (river water) and groundwater (spring water and well water) in Changsha from January 2012 to December 2013, the study analyzed the variation characteristics of δD and δ(18)O in different water bodies. The results showed that the values of D and 18O in precipitation of Changsha showed obvious seasonal variation because of the seasonal difference of the water vapor source, and it showed significant negative correlation between δ(18)O in precipitation and some meteorological factors such as the temperature and the amount, the local meteoric water line revealed the climatic characteristic of humid and rainy in Changsha; the fluctuation of 8D and 80 in surface water was more moderate than those in precipitation, and the seasonal variation of stable isotope value showed lagging characteristic compared with that in precipitation, the difference of river water line (RWL) indicated that the main supply sources of surface water were changing in different seasons; the fluctuation of δD and δ(18)O in groundwater was the least, the variation ranges and mean values of δD and δ(18)O in spring water and well water were very close, it showed that there were some hydraulic connections in the two water bodies, the values of δD and δ(18)O in groundwater were constantly lower during drought months, this phenomenon might have a certain relationship with the increasing absorbency of tree roots from groundwater. The results of the study have certain guiding significance for rational utilization of water resources in the region.Totally 49 water samples were collected in Shibing Dolomite Karst World Natural Heritage Site in Guizhou Province to analyze the characteristics and controlling factors of both the surface and underground waters, as well as the features and their origins of the dissolved inorganic carbon isotope. It was found that the pH of the study area was neutral to alkaline with low concentrations of total dissolved solids. The cations were dominated by Ca2+, Mg2 and anions by HCO3-, featured by HCO3-Ca x Mg type water. The ratios of Cl-, NO3- and SO4(2-) in the allogenic water from the shale area in the northern catchment were higher than those in autogenic water from the dolomite karst area, so did the concentration of Si. The SIc and SId of the allogenic waters in the shale area were negative. After the waters entered into and flew by the dolomite karst area, both the SIc and SId increased to over 0. It could be told by the water chemistry that the hydrochemistry was little impacted by the rainfall and human activities. The Gibbs plot revealed that the chemical composition of the waters was mainly controlled by rock weathering. The δ(13)C(DIC) of the surface waters ranged from -8.27% to -11.55% per hundred, averaging -9.45% per hundredo, while that of the underground waters ranged from -10.57% per hundred to -15.59% per hundred, averaging -12.04% per hundred, which was lighter than that of surface water. For the distribution features, it was found the δ(13)C(DIC), of the upper reaches of branches of Shangmuhe River was lighter than that of the lower reach, while that of the main river Shangmuhe River was relatively complex. Based on the mass balance of stable isotopes and the δ(13)C(DIC), the ratio of the origin of DIC of the ground water was calculated. It was found that 51.2% was from soil CO2, and 48.8% was from the rock itself.High-resolution pore water equilibrators (HR-Peeper) and diffusive gradients in the thin films ( DGT) technologies were combined to in situ measure soluble reactive phosphorus (c(PW)) and labile phosphorus (C(DGT)) on seven sites in the west of Lake Chaohu. Vertical distributions of c(PW) and c(DGT) in most sediment profiles were similar to a different extent, demonstrating that the buffer capacity of the sediment solids to pore water SRP was similar at different depths. The diffusion flux across the sediment-water interface (SWI) and the ratio of cDGT/ c(PW) (R) were used to characterize phosphorus activity in sediments. From the center of the lake to the estuary of Nanfei River, the values of c(PW) and c(DGT) within the 6 mm layer were below the SWI and the SWI diffusion flux gradually increased, reflecting an increase in pollution level of sediment phosphorus. The change of R values was unconspicuous, indicating that the buffering capacity of the interface sediment had no significant difference.It is an efficient and effective ecological restoration method by using the adaptability, large biomass of aquatic plants to purify the polluted water at present. However, there is a lack of systematic research on the impact on the physiological ecology of aquatic plants and its environmental effects of algae blooms cluster in summer. The aim of this paper is to reveal the mechanism of macrophytes demise in a shallow ecosystem by studying the influence on photosynthesis of water hyacinth caused by the cynaobacterial blooms gathered, and also to provide the theoretical basis for full effects of purification function of macrophytes to reduce the negative effects on the aquatic plants after algae blooms gathered during the higher temperature (not lower 25 degrees C) through simulating experiments. Results showed the dissolved oxygen quickly consumed in root zone of aquatic plants after algae blooms gathered and showed a lack of oxygen (DO less then 0.2 mg x L(-1)); and the ORP was lower than -100 mV after 1 d, bloom cells gathered and decomposed so as to play the purification function of the plant in the ecological rehabilitation project.In order to explore the temporal and spatial variation of nutrients and chlorophyll a and their relationship in the Three Gorges Reservoir, nutrients and chlorophyll a were monitored chronically and frequently in Gaoyang Lake in Pengxi River in the Three Gorges Reservoir from May 2013 to May 2014. The study showed that the thermal stratification affected the vertical distribution of chlorophyll a and nutrients. The water thermal stratification in Gaoyang Lake occurred in early March and disappeared in the middle of September, and there was no stratification in winter ( November to February of the second year). Chlorophyll a in the surface water increased from 14.92 microg x L(-1) to 183.73 microg x L(-1) and then the chlorophyll a concentration decreased with the increasing depth of the mixing layer ( epilimnion) in the spring of 2014. Furthermore, phosphorus concentration was significantly different among layers when the water stratified and the concentration gradient of TP between the surface and the bottom was (0.

Autoři článku: Pottsgood5114 (Gross Lucas)