Mitchellliu2904

Z Iurium Wiki

Verze z 3. 10. 2024, 17:11, kterou vytvořil Mitchellliu2904 (diskuse | příspěvky) (Založena nová stránka s textem „rve dysfunction and vascular injury in diabetic neuropathy. Furthermore, oxidative stress and the inflammatory response are involved in the process of diab…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

rve dysfunction and vascular injury in diabetic neuropathy. Furthermore, oxidative stress and the inflammatory response are involved in the process of diabetic neuropathy, and transcranial magnetic stimulation can reduce oxidative damage. The pathological mechanisms of diabetic neuropathy should be further studied in combination with transcranial magnetic stimulation technology.The inflammatory response after cerebral ischemia/reperfusion is an important cause of neurological damage and repair. After cerebral ischemia/reperfusion, microglia are activated, and a large number of circulating inflammatory cells infiltrate the affected area. This leads to the secretion of inflammatory mediators and an inflammatory cascade that eventually causes secondary brain damage, including neuron necrosis, blood-brain barrier destruction, cerebral edema, and an oxidative stress response. Activation of inflammatory signaling pathways plays a key role in the pathological process of ischemic stroke. Increasing evidence suggests that acupuncture can reduce the inflammatory response after cerebral ischemia/reperfusion and promote repair of the injured nervous system. Acupuncture can not only inhibit the activation and infiltration of inflammatory cells, but can also regulate the expression of inflammation-related cytokines, balance the effects of pro-inflammatory and anti-inflammatory factors, and interfere with inflammatory signaling pathways. Therefore, it is important to study the transmission and regulatory mechanism of inflammatory signaling pathways after acupuncture treatment for cerebral ischemia/reperfusion injury to provide a theoretical basis for clinical treatment of this type of injury using acupuncture. Our review summarizes the overall conditions of inflammatory cells, mediators, and pathways after cerebral ischemia/reperfusion, and discusses the possible synergistic intervention of acupuncture in the inflammatory signaling pathway network to provide a foundation to explore the multiple molecular mechanisms by which acupuncture promotes nerve function restoration.Stroke remains the leading cause of long-term disability. Hemiparesis is one of the most common post-stroke motor deficits and is largely attributed to loss or disruption of the motor signals from the affected motor cortex. As the only direct descending motor pathway, the corticospinal tract (CST) is the primary pathway to innervate spinal motor neurons, and thus, forms the neuroanatomical basis to control the peripheral muscles for voluntary movements. Here, we review evidence from both experimental animals and stroke patients, regarding CST axonal damage, functional contribution of CST axonal integrity and remodeling to neurological recovery, and therapeutic approaches aimed to enhance CST axonal remodeling after stroke. The new insights gleaned from preclinical and clinical studies may encourage the development of more rational therapeutics with a strategy targeted to promote axonal rewiring for corticospinal innervation, which will significantly impact the current clinical needs of subacute and chronic stroke treatment.Peptidylarginine deiminases are a family of calcium-activated enzymes with multifaceted roles in physiological and pathological processes, including in the central nervous system. Peptidylarginine deiminases cause post-translational deimination/citrullination, leading to changes in structure and function of a wide range of target proteins. Deimination can facilitate protein moonlighting, modify protein-protein interaction, cause protein dysfunction and induce inflammatory responses. Peptidylarginine deiminases also regulate the biogenesis of extracellular vesicles, which play important roles in cellular communication through transfer of extracellular vesicle-cargo, e.g., proteins and genetic material. mTOR inhibitor therapy Both peptidylarginine deiminases and extracellular vesicles are linked to a number of pathologies, including in the central nervous system, and their modulation with pharmacological peptidylarginine deiminase inhibitors have shown great promise in several in vitro and in vivo central nervous system disease models. Furthermore, extracellular vesicles derived from mesenchymal stem cells have been assessed for their therapeutic application in central nervous system injury. As circulating extracellular vesicles can be used as non-invasive liquid biopsies, their specific cargo-signatures (including deiminated proteins and microRNAs) may allow for disease "fingerprinting" and aid early central nervous system disease diagnosis, inform disease progression and response to therapy. This mini-review discusses recent advances in the field of peptidylarginine deiminase and extracellular vesicle research in the central nervous system, focusing on several central nervous system acute injury, degeneration and cancer models.Traumatic brain injury (TBI) is a major cause of mortality and morbidity in the pediatric population. With advances in medical care, the mortality rate of pediatric TBI has declined. However, more children and adolescents are living with TBI-related cognitive and emotional impairments, which negatively affects the quality of their life. Adult hippocampal neurogenesis plays an important role in cognition and mood regulation. Alterations in adult hippocampal neurogenesis are associated with a variety of neurological and neurodegenerative diseases, including TBI. Promoting endogenous hippocampal neurogenesis after TBI merits significant attention. However, TBI affects the function of neural stem/progenitor cells in the dentate gyrus of hippocampus, which results in aberrant migration and impaired dendrite development of adult-born neurons. Therefore, a better understanding of adult hippocampal neurogenesis after TBI can facilitate a more successful neuro-restoration of damage in immature brains. Secondary injuries, such as neuroinflammation and oxidative stress, exert a significant impact on hippocampal neurogenesis. Currently, a variety of therapeutic approaches have been proposed for ameliorating secondary TBI injuries. In this review, we discuss the uniqueness of pediatric TBI, adult hippocampal neurogenesis after pediatric TBI, and current efforts that promote neuroprotection to the developing brains, which can be leveraged to facilitate neuroregeneration.

Autoři článku: Mitchellliu2904 (Estrada Churchill)