Fraziermelchiorsen3660

Z Iurium Wiki

Verze z 3. 10. 2024, 16:44, kterou vytvořil Fraziermelchiorsen3660 (diskuse | příspěvky) (Založena nová stránka s textem „Given the rapid development of light weight EEG devices which we have witnessed the past decade, it is reasonable to ask to which extent neuroscience could…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Given the rapid development of light weight EEG devices which we have witnessed the past decade, it is reasonable to ask to which extent neuroscience could now be taken outside the lab. In this study, we have designed an EEG paradigm well suited for deployment "in the wild." The paradigm is tested in repeated recordings on 20 subjects, on eight different occasions (4 in the laboratory, 4 in the subject's own home). By calculating the inter subject, intra subject and inter location variance, we find that the inter location variation for this paradigm is considerably less than the inter subject variation. VX-803 mw We believe the paradigm is representative of a large group of other relevant paradigms. This means that given the positive results in this study, we find that if a research paradigm would benefit from being performed in less controlled environments, we expect limited problems in doing so.

Noisy galvanic vestibular stimulation (nGVS) is often used to improve postural stability in disorders, such as neurorehabilitation montage. For the safe use of nGVS, we investigated whether arterial pressure (AP) and heart rate vary during static supine and slow whole-body tilt with random nGVS (0.4 mA, 0.1-640 Hz, gaussian distribution) in a healthy elderly population.

This study was conducted with a double-blind, sham-controlled, cross-over design. Seventeen healthy older adults were recruited. They were asked to maintain a static supine position on a bed for 10 min, and the bed was tilted up (TU) to 70 degrees within 30 s. After maintaining this position for 3 min, the bed was passively tilted down (TD) within 30 s. Real-nGVS or sham-nGVS was applied from 4 to 15 min. The time course of mean arterial pressure (MAP) and RR interval variability (RRIV) were analyzed to estimate the autonomic nervous activity.

nGVS and/or time, including pre-/post-event (nGVS-start, TU, and TD), had no impact on MAP and RRIV-related parameters. Further, there was no evidence supporting the argument that nGVS induces pain, vertigo/dizziness, and uncomfortable feeling.

nGVS may not affect the AP and RRIV during static position and whole-body tilting or cause pain, vertigo/dizziness, and discomfort in the elderly.

nGVS may not affect the AP and RRIV during static position and whole-body tilting or cause pain, vertigo/dizziness, and discomfort in the elderly.Migraine is a chronic and idiopathic disorder leading to cognitive and affective problems. However, the neural basis of migraine without aura is still unclear. In this study, dynamic amplitude of low-frequency fluctuations (dALFF) analyses were performed in 21 patients with migraine without aura and 21 gender- and age-matched healthy controls to identify the voxel-level abnormal functional dynamics. Significantly decreased dALFF in the bilateral anterior insula, bilateral lateral orbitofrontal cortex, bilateral medial prefrontal cortex, bilateral anterior cingulate cortex, and left middle frontal cortex were found in patients with migraine without aura. The dALFF values in the anterior cingulate cortex were negatively correlated with pain intensity, i.e., visual analog scale. Finally, support vector machine was used to classify patients with migraine without aura from healthy controls and achieved an accuracy of 83.33%, sensitivity of 90.48%, and specificity of 76.19%. Our findings provide the evidence that migraine influences the brain functional activity dynamics and reveal the neural basis for migraine, which could facilitate understanding the neuropathology of migraine and future treatment.To preserve postoperative brain function, it is important for neurosurgeons to fully understand the brain's structure, vasculature, and function. Intraoperative high-frequency electrical stimulation during awake craniotomy is the gold standard for mapping the function of the cortices and white matter; however, this method can only map the "focal" functions and cannot monitor large-scale cortical networks in real-time. Recently, an in vivo electrophysiological method using cortico-cortical evoked potentials (CCEPs) induced by single-pulse electrical cortical stimulation has been developed in an extraoperative setting. By using the CCEP connectivity pattern intraoperatively, mapping and real-time monitoring of the dorsal language pathway is available. This intraoperative CCEP method also allows for mapping of the frontal aslant tract, another language pathway, and detection of connectivity between the primary and supplementary motor areas in the frontal lobe network. Intraoperative CCEP mapping has also demonstrated connectivity between the frontal and temporal lobes, likely via the ventral language pathway. Establishing intraoperative electrophysiological monitoring is clinically useful for preserving brain function, even under general anesthesia. This CCEP technique demonstrates potential clinical applications for mapping and monitoring large-scale cortical networks.Caretaking stability in the early life environment supports neurobehavioral development, while instability and neglect constitute adverse environments that can alter maturational processes. Research in humans suggests that different types of early life adversity (ELA) can have differential effects on caretaker relationships and later cognitive and social development; however, identifying mechanistic underpinnings will require animal models with translational validity. Two common rodent models, maternal separation (MS) and limited bedding (LB), influence the mother-infant relationship during a critical window of development. We hypothesized that these paradigms may affect the development of communication strategies on the part of the pup. Ultrasonic vocalizations (USVs) are a care-eliciting mechanism and ethologically relevant response to stressors in the rat pup. USV emission rates and acoustic parameters change throughout early development, presenting the opportunity to define developmental milestones in USVal trajectory involving the mother-infant relationship, facilitating the translation of animal ELA paradigms to assess later-life consequences.Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established therapy for Parkinson's disease motor symptoms. The ideal site for implantation within STN, however, remains controversial. While many argue that placement of a DBS lead within the sensorimotor territory of the STN yields better motor outcomes, others report similar effects with leads placed in the associative or motor territory of the STN, while still others assert that placing a DBS lead "anywhere within a 6-mm-diameter cylinder centered at the presumed middle of the STN (based on stereotactic atlas coordinates) produces similar clinical efficacy." These discrepancies likely result from methodological differences including targeting preferences, imaging acquisition and the use of brain atlases that do not account for patient-specific anatomic variability. We present a first-in-kind within-patient demonstration of severe mood side effects and minimal motor improvement in a Parkinson's disease patient following placement of a DBS lead in the limbic/associative territory of the STN who experienced marked improvement in motor benefit and resolution of mood side effects following repositioning the lead within the STN sensorimotor territory. 7 Tesla (7 T) magnetic resonance imaging (MRI) data were used to generate a patient-specific anatomical model of the STN with parcellation into distinct functional territories and computational modeling to assess the relative degree of activation of motor, associative and limbic territories.Research on cognitive control has sparked increasing interest in recent years, as it is an important prerequisite for goal oriented human behavior. The paced auditory serial addition task (PASAT) has been used to test and train cognitive control functions. This adaptive, challenging task includes continuous performance feedback. Therefore, additional cognitive control capacities are required to process this information along with the already high task-load. The underlying neural mechanisms, however, are still unclear. To explore the neural signatures of the PASAT and particularly the processing of distractive feedback information, feedback locked event-related potentials were derived from 24 healthy participants during an adaptive 2-back version of the PASAT. Larger neural activation after negative feedback was found for feedback related negativity (FRN), P300, and late positive potential (LPP). In early stages of feedback processing (i.e., FRN), a larger difference between positive and negative feedback responses was associated with poorer overall performance. This association was inverted in later stages (i.e., P300 and LPP). Together, our findings indicate stage-dependent associations between neural activation after negative information and cognitive functioning. Conceivably, increased early responses to negative feedback signify distraction, whereas higher activity at later stages reflects cognitive control processes to preserve ongoing performance.Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that has undergone tremendous growth over the last decade due to methodological advantages over other measures of brain activation. The action-observation network (AON), a system of brain structures proposed to have "mirroring" abilities (e.g., active when an individual completes an action or when they observe another complete that action), has been studied in humans through neural measures such as fMRI and electroencephalogram (EEG); however, limitations of these methods are problematic for AON paradigms. For this reason, fNIRS is proposed as a solution to investigating the AON in humans. The present review article briefly summarizes previous neural findings in the AON and examines the state of AON research using fNIRS in adults. A total of 14 fNIRS articles are discussed, paying particular attention to methodological choices and considerations while summarizing the general findings to aid in developing better protocols to study the AON through fNIRS. Additionally, future directions of this work are discussed, specifically in relation to researching AON development and potential multimodal imaging applications.Emotion recognition plays an important role in intelligent human-computer interaction, but the related research still faces the problems of low accuracy and subject dependence. In this paper, an open-source software toolbox called MindLink-Eumpy is developed to recognize emotions by integrating electroencephalogram (EEG) and facial expression information. MindLink-Eumpy first applies a series of tools to automatically obtain physiological data from subjects and then analyzes the obtained facial expression data and EEG data, respectively, and finally fuses the two different signals at a decision level. In the detection of facial expressions, the algorithm used by MindLink-Eumpy is a multitask convolutional neural network (CNN) based on transfer learning technique. In the detection of EEG, MindLink-Eumpy provides two algorithms, including a subject-dependent model based on support vector machine (SVM) and a subject-independent model based on long short-term memory network (LSTM). In the decision-level fusion, weight enumerator and AdaBoost technique are applied to combine the predictions of SVM and CNN.

Autoři článku: Fraziermelchiorsen3660 (Mouridsen Greer)