Goldengroth7148

Z Iurium Wiki

Verze z 3. 10. 2024, 14:25, kterou vytvořil Goldengroth7148 (diskuse | příspěvky) (Založena nová stránka s textem „The identification and treatment of androgen-independent prostate cancer are both challenging and significant. In this work, high-throughput deformability…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The identification and treatment of androgen-independent prostate cancer are both challenging and significant. In this work, high-throughput deformability cytometry was employed to assess the effects of two anti-cancer drugs, docetaxel and enzalutamide, on androgen-sensitive prostate cancer cells (LNCaP) and androgen-independent prostate cancer cells (PC-3), respectively. The quantified results show that PC-3 and LNCaP present not only different intrinsic physical properties but also different physical responses to the same anti-cancer drug. PC-3 cells possess greater stiffness and a smaller size than LNCaP cells. As the docetaxel concentration increases, PC-3 cells present an increase in stiffness and size, but LNCaP cells only present an increase in stiffness. As the enzalutamide concentration increases, PC-3 cells present no physical changes but LNCaP cells present changes in both cell size and deformation. These results demonstrated that cellular physical properties quantified by the deformability cytometry are effective indicators for identifying the androgen-independent prostate cancer cells from androgen-sensitive prostate cancer cells and evaluating drug effects on these two types of prostate cancer.Migration imaging is a key step in tunnel seismic data processing. Due to the limitation of tunnel space, tunnel seismic data are small-quantity, multi-component, and have a small offset. Kirchhoff migration based on the ray theory is limited to the migration aperture and has low migration imaging accuracy. FX11 cell line Kirchhoff migration can no longer meet the requirements of high-precision migration imaging. The reverse time migration (RTM) method is used to realize cross-correlation imaging by reverse-time recursion principle of the wave equation. The 3-D RTM method cannot only overcome the effect of small offset, but also realize multi-component data imaging, which is the most accurate migration method for tunnel seismic data. In this paper, we will study the 3-D RTM method for multi-component tunnel seismic data. Combined with the modeled data and the measured data, the imaging accuracy of the 3-D Kirchhoff migration and 3-D RTM is analyzed in detail. By comparing single-component and multi-component Kirchhoff migration and RTM profile, the advantages of the multi-component RTM method are summarized. Compared with the Kirchhoff migration method, the 3-D RTM method has the following advantages (1) it can overcome the effect of small offset and expand the range of migration imaging; (2) multi-component data can be realized to improve the energy of anomalous interface; (3) it can make full use of multiple waves to realize migration imaging and improve the resolution of the anomalous interface. The modeled data and the measured data prove the advantages of the 3-D multi-component RTM method.Sexually transmitted infections (STIs) represent a worldwide public health problem and, although many of them are curable, they continue to be neglected, especially in areas with a low human development index, such as in the northern region of Brazil. This review describes the results of 30 years of studies at the Virus Laboratory at the Federal University of Pará, including the prevalence and molecular epidemiology of HIV-1, HTLV-1/2, HPV, HBV, Treponema pallidum and Chlamydia trachomatis among urban and non-urban populations, and also in vulnerable groups in the Brazilian Amazon. Control strategies and challenges in preventing STIs are discussed considering this immense geographic region, where essential health services are unable to reach the entire population, especially the most vulnerable, such as female sex workers, people who use illicit drugs, remnants of quilombolos and indigenous communities.Ferritin is one of the most frequently requested laboratory tests in primary and secondary care, and levels often deviate from reference ranges. Serving as an indirect marker for total body iron stores, low ferritin is highly specific for iron deficiency. Hyperferritinemia is, however, a non-specific finding, which is frequently overlooked in general practice. In routine medical practice, only 10% of cases are related to an iron overload, whilst the rest is seen as a result of acute phase reactions and reactive increases in ferritin due to underlying conditions. Differentiation of the presence or absence of an associated iron overload upon hyperferritinemia is essential, although often proves to be complex. In this review, we have performed a review of a selection of the literature based on the authors' own experiences and assessments in accordance with international recommendations and guidelines. We address the biology, etiology, and epidemiology of hyperferritinemia. Finally, an algorithm for the diagnostic workup and management of hyperferritinemia is proposed, and general principles regarding the treatment of iron overload are discussed.In recent years, nanotechnology has sparked an interest in nanomodification of bituminous materials to increase the viscosity of asphalt binders and improves the rutting and fatigue resistance of asphalt mixtures. This paper presents the experimental results of laboratory tests on bituminous mixtures laid on a 1052 m-long test section built in Rome, Italy. Four asphalt mixtures for wearing and binder layer were considered two polymer modified asphalt concretes (the former modified with the additive Superplast and the latter modified with styrene-butadiene-styrene), a "hard" graphene nanoplatelets (GNPs) modified asphalt concrete and a not-modified mixture. The indirect tensile strength, water sensitivity, stiffness modulus, and fatigue resistance of the mixtures were tested and compared. A statistical analysis based on the results has shown that the mixtures with GNPs have higher mechanical performances than the others GNP could significantly improve the tested mechanical performances; further studies will be carried out to investigate its effect on rutting and skid resistance.Derived from magnetotactic bacteria (MTB), magnetosomes consist of magnetite crystals enclosed within a lipid bilayer membrane and are known to possess advantages over artificially synthesized nanoparticles because of the narrow size distribution, uniform morphology, high purity and crystallinity, single magnetic domain, good biocompatibility, and easy surface modification. These unique properties have increasingly attracted researchers to apply bacterial magnetosomes (BMs) in the fields of biology and medicine as MRI imaging contrast agents. Due to the concern of biosafety, a long-term follow-up of the distribution and clearance of BMs after entering the body is necessary. In this study, we tracked changes of BMs in major organs of mice up to 135 days after intravenous injection using a combination of several techniques. We not only confirmed the liver as the well-known targeted organs of BMs, but also found that BMs accumulated in the spleen. Besides, two major elimination paths, as well as the approximate length of time for BMs to be cleared from the mice, were revealed.

Autoři článku: Goldengroth7148 (Husted Hooper)