Eatongoode4008

Z Iurium Wiki

Verze z 3. 10. 2024, 13:42, kterou vytvořil Eatongoode4008 (diskuse | příspěvky) (Založena nová stránka s textem „Spin field-effect transistors (SFETs) based on the Rashba effect could manipulate the spin of electrons electrically, while seeking desirable Rashba semico…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Spin field-effect transistors (SFETs) based on the Rashba effect could manipulate the spin of electrons electrically, while seeking desirable Rashba semiconductors with large Rashba constant and strong electric-field response, to preserve spin coherence remains a key challenge. Herein, we propose a series of 2D Rashba semiconductors with two-atom-thick buckled honeycomb structure (BHS) according to high-throughput first-principles density functional theory calculations. BHS semiconductors show large Rashba constants that are favorable to be integrated into nanodevices superior to conventional bulk materials, and they can be fabricated by mechanical exfoliation or chemical vapor deposition. In particular, 2D AlBi monolayer has the largest Rashba constant (2.77 eVÅ) of all 2D Rashba materials. Furthermore, 2D BiSb monolayer is a promising candidate for SFETs due to its large Rashba constant (1.94 eVÅ) and strong electric field response (0.92 eÅ2). Our designed 2D-BiSb-SFET shows shorter spin channel length (42 nm with strain) than conventional SFETs (2-5 μm).The Yes-associated protein (YAP) is a major oncoprotein responsible for cell proliferation control. YAP's oncogenic activity is regulated by both the Hippo kinase cascade and uniquely by a mechanical-force-induced actin remodeling process. Inspired by reports that ovarian cancer cells specifically accumulate the phosphatase protein ALPP on lipid rafts that physically link to actin cytoskeleton, we developed a molecular self-assembly (MSA) technology that selectively halts cancer cell proliferation by inactivating YAP. We designed a ruthenium-complex-peptide precursor molecule that, upon cleavage of phosphate groups, undergoes self-assembly to form nanostructures specifically on lipid rafts of ovarian cancer cells. The MSAs exert potent, cancer-cell-specific antiproliferative effects in multiple cancer cell lines and in mouse xenograft tumor models. Our work illustrates how basic biochemical insights can be exploited as the basis for a nanobiointerface fabrication technology which links nanoscale protein activities at specific subcellular locations to molecular biological activities to suppress cancer cell proliferation.We describe the synthesis of 1,4-(disubstituted)-5-triazenyl-1,2,3-triazoles through a ligand-free domino copper(I)-catalyzed azide-alkyne-azide process of chelating aryl azides bearing N-P═O, P═O, and SO3H groups at the ortho position with a wide variety of acetylenes. DFT calculations reveal that Cu-chelation is a crucial factor in the interception of the CuAAC intermediate by the azide. The crystal structure of the catalytic species has been determined by X-ray diffraction.The integration of surface-enhanced Raman spectrum (SERS) and fluorescence-photoacoustic multimodal imaging in near-infrared photothermal therapy is highly desirable for cancer theranostic. However, typically, gold nanotheranostics usually require an additional modification of fluorophores and complex design refinements. In this work, by integrating surface-modified cysteine-hydroxyl merocyanine (CyHMC) molecules onto AuNRs, a novel lysosome-targeted gold-based nanotheranostics AuNRs-CyHMC that combines the specificity of Raman spectrum, the speed of fluorescence imaging, and deep penetration of photoacoustic imaging was successfully fabricated. Interestingly, fluorescence and Raman signals in this AuNRs-CyHMC system do not interfere, but it has pH-sensitive Raman signals and self-fluorescence localization ability under different excitation wavelengths. Fluorescence co-localization experiments further confirmed the lysosome-targeting ability of AuNRs-CyHMC. Typically, the proposed nanotheranostics were capable of SERS monitoring pH changes in both phosphate-buffered saline and living cells. Meanwhile, in vitro and in vivo experiments revealed that AuNRs-CyHMC possessed excellent fluorescence-photoacoustic performance and could be used for multimodal imaging-guided photothermal therapy. Furthermore, our work implied that gold nanotheranostics can provide great potential for cancer diagnosis and treatment.Epigenetic dysregulations resulting from the defects of epigenetic regulators are often reversible in tumorigenesis, making them promising cancer therapeutic targets. However, the limited specificity of action, short-term stability, and low retention of the epigenetic drugs greatly impede their clinical efficacy against solid tumors. Herein a method of combinatorial delivery of epigenetic modulatory drugs via a molecular self-assembly strategy was developed using inhibitors of DNA methyltransferases and histone deacetylases. The drug-drug conjugates can self-assemble into nanofibers with enhanced chemical stability. The nanofibers synergistically regulate aberrant DNA methylation and histone deacetylation, subsequently reprogram the gene expression profiles, and finally inhibit gastric cancer cell proliferation and promote cell apoptosis. The superior in vivo therapeutic efficacy of the nanofibers could be ascribed to the prolonged retention and accumulation in tumors and the minimized off-target effects. Therefore, this design of epigenetic-drug-based nanofiber formulation may provide a valuable paradigm for cancer therapy through epigenetic reprogramming.The present study investigated the dynamic behavior of a nanosized water droplet on a flat and stepped surface using molecular dynamics simulations. The effects of a wetting gradient associated with the surface and the step height of a stepped surface on the dynamic behavior of the water droplet were considered in this study. The dynamic behaviors of the water droplet were described quantitatively upon analyzing the transient variation of the adhesion energy and the position of the water droplet along with the time required to climb the step. The water droplet moved smoothly along the surface with an increasing wetting gradient. On the other hand, the step obstructed the water droplet from climbing the step as the step height increases. Forskolin clinical trial The dynamic behavior of the water droplet depending on the variation of the normalized step height and the differences in adhesion energies between the different surfaces was classified into three types, namely, (1) fully climbing the step, (2) partially climbing the step, and (3) being blocked by the step.

Autoři článku: Eatongoode4008 (Carstensen Buhl)