Bauerkehoe5771

Z Iurium Wiki

Verze z 3. 10. 2024, 13:36, kterou vytvořil Bauerkehoe5771 (diskuse | příspěvky) (Založena nová stránka s textem „The melt-blowing process uses high-speed and high-temperature airflow from the die head to draw polymer melt into micron-sized fibers. In this work, to red…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The melt-blowing process uses high-speed and high-temperature airflow from the die head to draw polymer melt into micron-sized fibers. In this work, to reduce the diameter of the melt-blowing fibers, three new slot dies have been designed based on the common slot die. With computational fluid dynamics technology, the two-dimensional flow fields from these new types of slot dies were numerically calculated. To verify the validity of the calculation, the simulation data was compared with the experimental data. The numerical result shows that the internal flow stabilizers could increase the velocity peak and the pressure peak on the centerline of the flow field and could reduce the reverse velocity, temperature decay, and maximum value of turbulence intensity near the die head. Compared with the common slot die, the slot dies with cuboid bosses could increase the air velocity and temperature on the spinning line in most areas and reduce the air pressure within 1.5 cm below the die. The slot dies with internal flow stabilizers and cuboid bosses have the optimal flow field performance and would be beneficial to the production of thinner fibers.We explore LiNiO2-based cathode materials with two-element substitutions by an ab initio simulation-based materials informatics (AIMI) approach. According to our previous study, a higher cycle performance strongly correlates with less structural change during the charge-discharge cycles; the latter can be used for evaluating the former. However, if we target the full substitution space, full simulations are infeasible even for all binary combinations. UPF 1069 solubility dmso To circumvent such an exhaustive search, we rely on Bayesian optimization. Actually, by searching only 4% of all of the combinations, our AIMI approach discovered two promising combinations, Cr-Mg and Cr-Re, whereas each atom itself never improved the performance. We conclude that the synergy never emerges from a common strategy restricted to combinations of "good" elements that individually improve the performance. In addition, we propose a guideline for the binary substitutions by elucidating the mechanism of the crystal structure change.Perovskite oxynitrides have been studied with regard to their visible light-driven photocatalytic activity and novel electronic functionalities. The assessment of the intrinsic physical and/or electrochemical properties of oxynitrides requires the epitaxial growth of single-crystalline films. However, the heteroepitaxy of perovskite oxynitrides has not yet matured compared to the progress realized in work with perovskite oxides. Herein, we report the heteroepitaxial growth of CaTaO2N thin films with (100)pc, (110)pc, and (111)pc crystallographic surface orientations (where the subscript pc denotes a pseudocubic cell) on SrTiO3 substrates using reactive radio frequency magnetron sputtering, along with investigations of crystallinity and surface morphology. Irrespective of surface orientation, stoichiometric CaTaO2N epitaxial thin films were grown coherently on SrTiO3 substrates and showed clear step and terrace surfaces in the case of low values of film thickness of approximately 20 nm. A (110)pc-oriented film was also more highly crystalline than (100)pc- and (111)pc-oriented specimens. This relationship between crystallinity and surface orientation is ascribed to the number of inequivalent in-plane rotational domains, which stems from the symmetry mismatch between the orthorhombic CaTaO2N and cubic SrTiO3. A CaTaO2N thin film grown on a lattice- and symmetry-matched orthorhombic DyScO3 substrate exhibited a significant crystallinity and a clear step and terrace surface even though the film was thick (∼190 nm). These results are expected to assist in developing the heteroepitaxial growth of high-quality perovskite oxynitride thin films.The influence of H2O on SF6 decomposition characteristics under positive DC partial discharge (PD) is significant. To evaluate PD fault severity in DC SF6-insulated equipment using the production characteristics of SF6 decomposition components, the corresponding relationship and mathematical expression between the production of SF6 decomposition components and the H2O content should be identified and achieved. Thus, SF6 decomposition experiments under positive DC PD are performed to reflect the influence of H2O on SF6 decomposition components. Results show that the total discharge quantity and the discharge repetition rate averaged for 1 s decrease slightly when the H2O content increases from 0 to 970 ppmv and then increase when the H2O content increases from 970 to 5120 ppmv. The effective production rates of SO2F2, SOF2, and SO2 increase with the H2O content, whereas that of SOF4 decreases. Finally, the corresponding relationship and mathematical expression between the characteristic ratio (c(SO2F2) + c(SOF4))/(c(SOF2) + c(SO2)) of components and the H2O content have been achieved, which can afford references for PD fault diagnosis in DC SF6 gas-insulated equipment.A rapid, simple procedure is described for synthesizing trialkyl, dialkylaryl, and alkyldiaryl sulfonium salts that features a selective extraction procedure to access analytically pure sulfonium salts. Alkylation of dialkylsulfides, alkylarylsulfides, and diarylsulfides followed by partitioning between acetonitrile and hexanes efficiently separates nonpolar reactants and byproducts, the usual impurities, to afford analytically pure crystalline and noncrystalline sulfonium salts. The method is efficient, general, and particularly well suited for the preparation of oily sulfonium salts that are otherwise extremely difficult to purify.Coal as an important fossil energy has been comprehensively studied in terms of its structure, reactivity, and application. However, there are few publications reported about the formation mechanism of coal. In order to explore the molecular mechanism of the formation of the dense medium component (DMC) aggregate, which is extracted from coal, the molecular model of the DMC scaffold (DMC-S) was constructed based on a number of X-ray photoelectron spectroscopy, 13C NMR, and ultimate analysis. Then, DMC-S was further optimized, and the periodic boundary condition was added for molecular mechanics and molecular dynamics simulation. The DMC-S molecule model with a density of 1.05 g/cm3 and a different number of unit cells was obtained after the aforementioned experiments and simulations. When the unit cell contained 12 DMC-S molecules, the absolute value of electrostatic energy significantly increased and the peripheral branch chains in DMC-S interlaced with each other, forming a compact aggregate. The density and macrosize calculated values are all slightly lower than the true relative values because the presence of minerals or small molecules was not included in the model construction. Despite some unavoidable defects, the comparison between the simulated and experimental results validates the DMC-S aggregate model and lays a solid foundation for an in-depth study of DMC and its reactivity.The Allura red AC (ARAC) dye adsorption onto natural sawdust (NSD) and hexadecylpyridinium bromide-treated sawdust (MSD) was investigated in aqueous solution as a function of contact time, solution pH, particle size, adsorbent dosage, dye concentration, temperature, and ionic strength. The adsorbents were characterized by Fourier transform infrared spectroscopy and X-ray diffraction crystallography. The dye adsorption onto both adsorbents was confirmed by field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. The maximum dye adsorption was found within 120 min at pH 2.0 for NSD and pH 3.0 for MSD, respectively, with a particle size of 0-75 μm and an adsorbent dosage of 0.07 g/50 mL ARAC dye solution (50 μmol/L). The batch adsorption kinetic data were followed by the pseudo-second-order kinetic model rather than the pseudo-first-order and Elovich kinetic models. Equilibrium adsorption isotherms were explained by the Langmuir isotherm model, and the maximum extent of adsorption was found to be 52.14 μmol/g for NSD and 151.88 μmol/g for MSD at 55 °C. The values of activation energy (E a) and thermodynamic parameters (ΔG ⧧, ΔH ⧧, ΔS ⧧, ΔG°, ΔH° and ΔS°) proved that the ARAC dye adsorption onto both adsorbents NSD and MSD is a spontaneous-endothermic physisorption process. ARAC (98-99%) was released from dye-loaded adsorbents in aqueous solution (pH ≥ 12) within 120 min. The adsorbents NSD and MSD were reused for a second time without significant loss of their adsorption efficiency.A hydrazone ligand, (E)-6-(2-((2-hydroxynaphthalen-1-yl)methylene)hydrazinyl)nicotinohydrazide (H2L), was synthesized and characterized by spectroscopic methods. The reaction of H2L with CuCl2·2H2O in methanol gave Cu(II) coordination compound, [Cu(HL')(Cl)]·CH3OH (1), which was characterized by elemental analysis and spectroscopic methods (Fourier transform infrared (FT-IR) and UV-vis). The structure of 1 was also determined by single-crystal X-ray analysis. Structural studies confirmed the formation of esteric group during the synthesis of 1. Compound 1 was immobilized on 3-aminopropyltriethoxysilane (APTS)-functionalized silica gel through the amidification reaction and the obtained heterogeneous coordination compound was utilized as a catalyst for the three-component azide-epoxide-alkyne cycloaddition reaction in water as a green solvent. The structural properties of the heterogeneous catalyst were characterized by a combination of FT-IR, UV-vis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) analyses. The effect of the amount of catalyst and temperature on the cycloaddition reaction was studied, and the obtained 1,2,3-triazoles were characterized by spectroscopic studies and single-crystal X-ray analysis. The catalytic investigations revealed that this catalytic system has high activity in the synthesis of β-hydroxy-1,2,3-triazoles. It was also found that the aromatic and aliphatic substituents on the alkyne and epoxide together with the reaction temperature have considerable effects on the activity and regioselectivity of this catalytic system.In a new and environmentally sustainable approach, a series of 2-arylimidazo[1,2-a]pyridine derivatives were synthesized in aqueous media in the presence of iodine as a catalyst. The reaction proceeded by condensation of various aryl methyl ketones with 2-aminopyridines to afford 2-arylimidazo[1,2-a]pyridines in good overall yields. Although several of the reactions were efficiently performed "on water", the addition of a surfactant, namely, sodium dodecyl sulphate , was found effective in terms of substrate scope and yield enhancement. Both methods were successfully used for the gram-scale synthesis of a marketed drug, zolimidine. The simple experimental setup, water as "green" media, and inexpensive catalyst are some of the merits of this protocol.H2S is abundantly available in nature, and it is a common byproduct in industries. Molybdenum sulfides have been proved to be active in the catalytic decomposition of hydrogen sulfide (H2S) to produce hydrogen. In this study, density functional theory (DFT) calculations are carried out to explore the reaction mechanisms of H2S with MS3 (M = Mo, W) clusters. The reaction mechanism of H2S with MoS3 is roughly the same as that of the reaction with WS3, and the free-energy profile of the reaction with MoS3 is slightly higher than that of the reaction with WS3. The overall driving forces (-ΔG) are positive, and the overall reaction barriers (ΔG b) are rather small, indicating that such H2 productions are product-favored. MS3 (M = Mo, W) clusters have clawlike structures, which have electrophilic metal sites to receive the approaching H2S molecule. After several hydrogen-atom transfer (HAT) processes, the final MS4·H2 (IM-4) complexes are formed, which could desorb H2 at a relatively low temperature. The singlet product MS4 clusters contain the singlet S2 moiety, similar to the adsorbed singlet S2 on the surface of sulfide catalysts.

Autoři článku: Bauerkehoe5771 (Bjerring Ortiz)