Hutchinsonrankin4013

Z Iurium Wiki

Verze z 3. 10. 2024, 13:15, kterou vytvořil Hutchinsonrankin4013 (diskuse | příspěvky) (Založena nová stránka s textem „We report on a facile and flexible scheme for producing the controllable pure transverse polarization state at the focus within a tightly focused field. To…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We report on a facile and flexible scheme for producing the controllable pure transverse polarization state at the focus within a tightly focused field. Toward this aim, a special type of hybrid vector beam exhibiting unusual "8-type" mapping tracks of azimuthal polarization states on the Poincaré sphere is employed. Due to the peculiar polarization structures, at the focus, there is only the transverse component, while the longitudinal component is zero for any 8-type vector beam. Enpp-1-IN-1 mouse , the transverse polarization state at the focus is exactly the same as that of the cross point of the 8-type mapping track. Benefiting from this appealing polarization relationship, an arbitrary transverse polarization state can be easily achieved at the focus via altering the mapping track of incident vector beams. These results may have potential applications in nano and spin photonics.We demonstrate tunable microring resonators (TMRs) based on light-activated functional polymer coatings deposited on glass optical fibers. TMRs were fabricated using two layers of polydimethylsiloxane-based compounds one incorporating an azobenzene dye and one using a fluorescent ytterbium and erbium-doped sodium yttrium fluoride powder. The latter yields a photoluminescent composite producing green up-conversion emission under infrared pumping. This visible emission triggers photoinduced birefringence effects in the azobenzene layer, thereby modifying the spectral features of the TMR devices. The shift in the resonance peaks as a function of pump power is linear, yielding a tuning range of 1.3 nm. Aside from the observed photoinduced effects, we also discuss the photothermal effects involved in the tuning mechanism.We worked on a new scheme of quasi-phase matching (QPM) based on the negative first order of the spatial modulation of the sign of the second-order nonlinearity. Applying this scheme in the case of angular-QPM (AQPM) in a biaxial crystal reveals new directions of propagation for efficient parametric frequency conversion as well as "giant" spectral acceptances. The experimental validation is performed in a periodically poled rubidium-doped KTiOPO4 biaxial crystal. #link# This new approach naturally extends to other periodically poled uniaxial crystals such as periodically poled LiNbO3.We have developed an efficient framework for analyzing the reflection and transmission properties of semiconductor photonic crystal optical amplifiers. Specifically, we have investigated the use of slow light to enhance the gain of short integrated amplifiers. We find that the expected enhancement in transmission is limited by distributed feedback induced by the material gain itself. Such back-scattering is further enhanced by the refractive index variation associated with the linewidth enhancement factor. The inclusion of this effect reveals that for a given material gain, devices with smaller linewidth enhancement factor may offer better performance.We experimentally demonstrate Raman amplification of signal pulses in a high-order Bessel mode (LP06) at a wavelength of 1121 nm in a 335-m step-index fiber with a 70-µm diameter, 0.227-NA pure-silica core. This was pumped by 5-ns multimode pulses at 1065 nm from a Yb-doped fiber master oscillation power amplifier. The mode purity of the amplified pulses is well preserved to 23 dB of average-power gain, to 774 W of peak power in 2 ns pulses at a 20 kHz repetition rate, when pumped with a peak power of 942 W. The pump depletion as averaged over the signal pulses reaches 59%. We believe, to the best of our knowledge, that this is the first demonstration of stable mode propagation and Raman amplification of a single Bessel-like higher-order mode in a fiber of hundreds of meters. This shows the potential for efficient power scaling of a single signal mode with low-brightness pumping, comparable with that from continuous-wave multimode diode lasers.Laser damage in fused silica, particularly ultraviolet laser damage, is still a key problem limiting the development of high-power laser systems. In this Letter, a combined process of chemical etching and CO2 laser polishing was applied to ground fused silica. A super-smooth surface with a root-mean-square roughness of 0.25 nm was achieved through this combined process. Furthermore, the combined process can reduce the introduction of photoactive metal impurity elements, destructive defects, and chemical-structure defects, resulting in a 0% probability damage threshold nearly 33% higher than a conventional chemical mechanical polished sample for a 7.6 ns pulse at a wavelength of 355 nm.We present a concept to design narrow linewidth dual-channel wavelength filters using the principle of wavelength tuning under conical mounting of guided mode resonance structure. The general procedure for the design of such filters from visible to NIR wavelength range is presented and validated experimentally. We show that already fabricated guided mode resonance structures that do not show dual wavelength filtering at these wavelengths in classical mounting can exhibit dual wavelength filtering in conical mounting. Using this principle, we design high azimuthal angle tolerant guided mode resonance dual wavelength filters at C-band communication wavelengths (1310 and 1550 nm) that are insensitive to azimuthal angle over a range of up to 20 deg, achieved in expense of a tolerance in the angle of incidence that is less than 3 deg.Using a full-field propagator model, we report on the emergence of highly localized, subcycle solitonic structures for few-cycle long-wave-infrared (LWIR) pulses propagating through optical semiconductor materials with efficient quadratic nonlinearities and broad anomalous transmission windows. link2 We briefly discuss the theoretical basis for the observed spatiotemporal carrier-wave dynamics and compare it to simulations of a weakly perturbed pulse's propagation through two currently grown, low-loss IR semiconductor crystals.The quantum analogue of ptychography, a powerful coherent diffractive imaging technique, is a simple method for reconstructing d-dimensional pure states. It relies on measuring partially overlapping parts of the input state in a single orthonormal basis and feeding the outcomes to an iterative phase retrieval algorithm for postprocessing. We provide a proof of concept demonstration of this method by determining pure states given by superpositions of d transverse spatial modes of an optical field. A set of n rank-r projectors, diagonal in the spatial mode basis, is used to generate n partially overlapping parts of the input, and each part is projectively measured in the Fourier transformed basis. For d up to 32, we successfully reconstructed hundreds of random states using n=5 and n=d rank-⌈d/2⌉ projectors. The extension of quantum ptychography for other types of photonic spatial modes is outlined.A table-top midwave-infrared optical parametric chirped pulse amplification (OPCPA) system generates few-cycle pulses with multi-10 GW peak power at a 1 kHz repetition rate. link3 The all-optically synchronized system utilizes ZnGeP2 nonlinear crystals and a highly stable 2 µm picosecond pump laser based on HoYLiF4. An excellent energy extraction is achieved by reusing the pump pulse after the third parametric power amplification stage, resulting in 3.4 mJ idler pulses at a center wavelength of 4.9 µm. Pulses as short as 89.4 fs are achieved, close to only five optical cycles. Taking into account the pulse energy, a record high peak power of 33 GW for high-energy mid-IR OPCPAs beyond 4 µm wavelength is demonstrated.GaSe crystals are promising as nonlinear optical converters in the mid- and far-IR ranges. However, it is challenging to increase the GaSe surface transmittance of 77% with conventional antireflection coatings because of poor surface quality, leading to coating adhesion problems. Antireflection microstructures (ARMs) offer an alternative way of increasing surface transmittance. In this work, ARMs were fabricated on the surface of a GaSe plate by single-pulse femtosecond laser ablation. An average GaSe surface transmittance of 94% in the 7-11 µm range and a maximum transmittance of 97.8% at 8.5 µm were obtained. The proposed method can be used to increase the efficiency of GaSe-based nonlinear converters.Typical methods to decode a complex orbital-angular-momentum (OAM) spectrum suffer from issues such as a narrow OAM range, unstable interferometer, and long measuring time. In this Letter, we use a single-beam interferometer to measure the complex OAM spectrum with a single-pixel detector. The complex OAM spectrum ranging from -10 to 10 can be measured in 11 ms with the fidelity approach of 97.0%, experimentally. Our approach allows one to characterize an unknown coherent field with any complex basis, e.g., the Laguerre-Gaussian (LG) basis is used for radial index spectrum measurement. Furthermore, single-pixel complex amplitude imaging based on the LG spectrum acquisition is presented, and the advantages in resolution and flexibility are demonstrated.It is a daunting challenge to realize ultraviolet C (UVC) lasing (i.e., has a wavelength range from 200 to 275 nm) from upconversion nanocrystals due to their low upconversion efficiency. Here, we fabricate Ba2LaF7Yb3+(90mol%), Tm3+(5mol%) upconversion nanocrystals from amorphous borosilicate glass to support emission at ∼263nm under 980 nm ns laser excitation. The excitation threshold can be further reduced from ∼130 to ∼26.5mJ/cm2 by using a cylindrical microcavity. We also found that the growth of defect-free Ba2LaF7 nanocrystals with a high concentration of codoping Yb3+ and Tm3+ ions inside high optical damage threshold borosilicate glass is the key to achieving room-temperature UVC upconversion lasing under high-intensity excitation.We present a scheme for correction of x-y-separable aberrations in optical coherence tomography (OCT) designed to work with phase unstable systems with no hardware modifications. Our approach, termed SHARP, is based on computational adaptive optics and numerical phase correction and follows from the fact that local phase stability is sufficient for the deconvolution of optical aberrations. We demonstrate its applicability in a raster-scan polygon-laser OCT system with strong phase-jitter noise, achieving successful refocusing at depths up to 4 times the Rayleigh range. We also present in vivo endoscopic and ex vivo anterior segment OCT data, showing significant enhancement of image quality, particularly when combining SHARP results with a resolution-preserving despeckling technique like TNode.Polydimethylsiloxane-based optofluidics provides a powerful platform for a complete analytical lab-on-chip. Here, we report on a novel on-chip laser source that can be integrated with sample preparation and analysis functions. A corrugated sidewall structure is integrated into a microfluidic channel to form a distributed feedback (DFB) laser using rhodamine 6G dissolved in an ethylene glycol and water solution. Lasing is demonstrated with a threshold pump power of 87.9 µW, corresponding to a pump intensity of 52.7mW/cm2. Laser threshold and output power are optimized with respect to rhodamine 6G concentration and core index and found to be in good agreement with a rate equation model. Additionally, the laser can be switched on and off mechanically using a pneumatic cell inducing positive pressure on the grating.

Autoři článku: Hutchinsonrankin4013 (Good Skaarup)