Karlssoncabrera9831

Z Iurium Wiki

Verze z 3. 10. 2024, 12:45, kterou vytvořil Karlssoncabrera9831 (diskuse | příspěvky) (Založena nová stránka s textem „Overall, evidence clearly indicates that exercise powerfully regulates intrahepatic storage of fat and risk for steatosis. © 2020 by the American Diabetes…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Overall, evidence clearly indicates that exercise powerfully regulates intrahepatic storage of fat and risk for steatosis. © 2020 by the American Diabetes Association.Diabetes is now a pandemic disease. Moreover, a large number of people with prediabetes are at risk for developing frank diabetes worldwide. Both type 1 and type 2 diabetes increase the risk of atherosclerotic cardiovascular disease (CVD). Even with statin treatment to lower LDL cholesterol, patients with diabetes have a high residual CVD risk. Factors mediating the residual risk are incompletely characterized. An attractive hypothesis is that remnant lipoprotein particles (RLPs), derived by lipolysis from VLDL and chylomicrons, contribute to this residual risk. RLPs constitute a heterogeneous population of lipoprotein particles, varying markedly in size and composition. Although a universally accepted definition is lacking, for the purpose of this review we define RLPs as postlipolytic partially triglyceride-depleted particles derived from chylomicrons and VLDL that are relatively enriched in cholesteryl esters and apolipoprotein (apo)E. RLPs derived from chylomicrons contain apoB48, while those derived from VLDL contain apoB100. Clarity as to the role of RLPs in CVD risk is hampered by lack of a widely accepted definition and a paucity of adequate methods for their accurate and precise quantification. New specific methods for RLP quantification would greatly improve our understanding of their biology and role in promoting atherosclerosis in diabetes and other disorders. © 2020 by the American Diabetes Association.In type 2 diabetes, β-cells endure various forms of cellular stress, including oxidative stress and endoplasmic reticulum stress, secondary to increased demand for insulin production and extracellular perturbations, including hyperglycemia. Chronic exposure to stress causes impaired insulin secretion, apoptosis, and loss of cell identity, and a combination of these processes leads to β-cell failure and severe hyperglycemia. Therefore, a better understanding of the molecular mechanisms underlying stress responses in β-cells promises to reveal new therapeutic opportunities for type 2 diabetes. In this perspective, we discuss posttranscriptional control of gene expression as a critical, but underappreciated, layer of regulation with broad importance during stress responses. Specifically, regulation of mRNA translation occurs pervasively during stress to activate gene expression programs; however, the convenience of RNA sequencing has caused translational regulation to be overlooked compared with transcriptional controls. We highlight the role of RNA binding proteins in shaping selective translational regulation during stress and the mechanisms underlying this level of regulation. A growing body of evidence indicates that RNA binding proteins control an array of processes in β-cells, including the synthesis and secretion of insulin. Therefore, systematic evaluations of translational regulation and the upstream factors shaping this level of regulation are critical areas of investigation to expand our understanding of β-cell failure in type 2 diabetes. © 2020 by the American Diabetes Association.The severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) outbreak in Wuhan, China has now spread to many countries across the world including the UK with an increasing death toll. This will inevitably lead to an increase in the number of suspected coronavirus disease 2019 (COVID-19)-related deaths at autopsy. The Royal College of Pathologists has responded to this concern with the release of a briefing on autopsy practice relating to COVID-19. The following article is a summary and interpretation of these guidelines. It includes a description of hazard group 3 organisms, the category to which SARS-CoV-2 has been assigned, a brief description of what is currently known about the pathological and autopsy findings in COVID-19, a summary of the recommendations for conducting autopsies in suspected COVID-19 cases and the techniques for making the diagnosis at autopsy. It concludes by considering the clinicopathological correlation and notification of such cases. © Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.The coronavirus disease 2019 (COVID-19) is a zoonotic viral infection originating from Wuhan, China in December 2019. The World Health Organization has classified this pandemic as a global health emergency due to its virulent nature of transmission, which may lead to acute respiratory distress syndrome. Singapore's health ministry has responded with enhanced surveillance of COVID-19 for all suspected pneumonia cases, further increasing the volume of testing via real-time reverse transcription PCR, as well as samples necessitating stringent infectious control. Collectively, this has implications on the total testing process, laboratory operations and its personnel due to biosafety concerns. Turnaround time for routine testing may also be affected. The aim of this article is to present our tertiary institution's early experience with managing this emerging crisis and offer practical considerations for the preanalytical, analytical and postanalytical phases of laboratory testing in this cohort of patients. © Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.Menaquinone (MK) or vitamin K2 is an important metabolite that controls the redox/energy status of Mycobacterium tuberculosis Although the major steps of MK biosynthesis have been delineated, the regulatory mechanisms of this pathway have not been adequately explored. Bashiri et al. now demonstrate that MenD, catalyzing the first committed step of MK production, is allosterically inhibited by a downstream cytosolic metabolite in the MK biosynthesis pathway. © 2020 Blaise and Kremer.Insulin-stimulated trafficking of GLUT4 requires the myosin motor Myo1C and signaling adaptor 14-3-3β. Originally, it was thought that 14-3-3β promotes GLUT4 transport by binding the Myo1C lever arm and activating the Myo1C motor. find more New work by Ji and Ostap using in vitro assays reveals that 14-3-3β binding actually inhibits Myo1C motility, prompting reconsideration of the functional relationship between 14-3-3β and Myo1C and the regulatory potential of atypical light chains. © 2020 Eddington and Titus.

Autoři článku: Karlssoncabrera9831 (Mccray Jacobsen)