Coatesholland3790
The discovery of juvenile hormones (JH) and their synthetic analogs (JHA) generated excitement and hope that these compounds will replace first- and second-generation insecticides that have not so desirable environmental and human safety profiles. However, JHAs used commercially during the past four decades did not meet these expectations. The recent availability of advanced molecular and histological methods and the discovery of key players involved in JH action provided some insights into the functioning of JHA in a stage and species-specific manner. In this review, we will summarize recent findings and stage-specific action of JHA, focusing on three commercially used JHA, methoprene, hydroprene and pyriproxyfen and economically important pests, the red flour beetle, Tribolium castaneum, and the tobacco budworm, Heliothis virescens, and disease vector, the yellow fever mosquito, Aedes aegypti.Reducing the use of broad-spectrum insecticides is one of the many challenges currently faced by insect pest management practitioners. For this reason, efforts are being made to develop environmentally benign pest-control products through bio-rational approaches that aim at disrupting physiological processes unique to specific groups of pests. Perturbation of hormonal regulation of insect development and reproduction is one such strategy. It has long been hypothesized that some enzymes in the juvenile hormone biosynthetic pathway of moths, butterflies and caterpillars (order Lepidoptera) display unique structural features that could be targeted for the development of Lepidoptera-specific insecticides, a promising avenue given the numerous agricultural and forest pests belonging to this order. Farnesyl diphosphate synthase, FPPS, is one such enzyme, with recent work suggesting that it has structural characteristics that may enable its selective inhibition. This review synthesizes current knowledge on FPPS and summarizes recent advances in its use as a target for insecticide development.Insect Growth Regulators (IGRs) represent advanced, bio-rational insecticides. This Special Issue reflects progress in IGR development that has been enabled by insight into the molecular principles of biosynthetic or hormone signaling pathways. The unifying principle is aiming at processes and molecular targets that are unique to arthropods and ideally to narrower insect taxa representing pests or disease vectors. While some strategies of obtaining the desired compounds for chemical intervention rely on rational, structure-based design or computational power, others exploit technologies allowing automated, high-throughput screening of large chemical libraries. All avenues leading to selective and environmentally safe pest control are valid as we face the imminent threat of the declining world insect population.Hypozincemia is prevalent in severe acute respiratory syndrome coronavirus-2 (SARS-COV-2)-infected patients and has been considered as a risk factor in severe coronavirus disease-2019 (COVID-19). Whereas zinc might affect SARS-COV-2 replication and cell entry, the link between zinc deficiency and COVID-19 severity could also be attributed to the effects of COVID-19 on the body metabolism and immune response. Zinc deficiency is more prevalent in the elderly and patients with underlying chronic diseases, with established deleterious consequences such as the increased risk of respiratory infection. We reviewed the expected effects of zinc deficiency on COVID-19-related pathophysiological mechanisms focusing on both the renin-angiotensin and kinin-kallikrein systems. Mechanisms and effects were extrapolated from the available scientific literature. Zinc deficiency alters angiotensin-converting enzyme-2 (ACE2) function, leading to the accumulation of angiotensin II, des-Arg9-bradykinin and Lys-des-Arg9-bradykinin, which results in an exaggerated pro-inflammatory response, vasoconstriction and pro-thrombotic effects. Additionally, zinc deficiency blocks the activation of the plasma contact system, a protease cascade initiated by factor VII activation. Deferoxamine Ferroptosis inhibitor Suggested mechanisms include the inhibition of Factor XII activation and limitation of high-molecular-weight kininogen, prekallikrein and Factor XII to bind to endothelial cells. The subsequent accumulation of Factor XII and deficiency in bradykinin are responsible for increased production of inflammatory mediators and marked hypercoagulability, as typically observed in COVID-19 patients. To conclude, zinc deficiency may affect both the renin-angiotensin and kinin-kallikrein systems, leading to the exaggerated inflammatory manifestations characteristic of severe COVID-19.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a disease called COVID-19. COVID-19 is primarily diagnosed using molecular techniques mainly real-time reverse transcriptase PCR. Reliable and accurate serologic assays for COVID-19, are an important tool for surveillance and epidemiologic studies. In this study, the IgG/IgM Rapid Test Cassette and the Prima COVID-19 IgG/IgM Rapid Test for the detection of SARS-CoV-2 antibodies in blood, serum and plasma samples collected from patients up to 48 days after symptom onset in Saudi Arabia were validated. Overall, both tests showed poor performance and cannot be utilised for COVID-19 diagnosis as a point of care test or to determine seroprevalence.
Since the first published comprehensive checklist of Azorean fishes - covering the whole Exclusive Economic Zone (EEZ) region - several new records have been published and an updated checklist published in 2010. This new dataset covers all confirmed species of actinopterygians for the Azorean EEZ.
In this update, we made corrections to the previous checklists, updated the taxonomy according to the most recent bibliography and added two new species to the Azorean Actinopterygii checklist.
In this update, we made corrections to the previous checklists, updated the taxonomy according to the most recent bibliography and added two new species to the Azorean Actinopterygii checklist.Stoneflies (Plecoptera) are often associated with inhabiting cold perennial streams, but many species also inhabit intermittent streams that experience reduced or lack of flow during summer and autumn. In this study, the influence of stream permanence on stonefly assemblage composition and spatial distribution at Mammoth Cave National Park, Kentucky, USA, was addressed, based on a 14 month sampling regime from the fullest range of stream sizes and habitable flow regions available. Adult stoneflies were collected monthly from 43 sites at the Park plus an additional two sites at the near-adjacent Western Kentucky University Green River Preserve. Collections were done from December 2018-November 2019 using a standard timed protocol with beating sheets for adults and once in December 2019-January 2020 for larvae. Stream sites were assigned one of five category types perennial spring runs, perennial spring seeps, upland perennial streams, perennial riverine and summer dry runs. In total, 34 species were collected.