Benjamincolon7307

Z Iurium Wiki

Verze z 3. 10. 2024, 12:23, kterou vytvořil Benjamincolon7307 (diskuse | příspěvky) (Založena nová stránka s textem „However, some familiarity with the basic principles of deep learning will be helpful and are briefly reviewed. It is hoped that this will be useful in unde…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

However, some familiarity with the basic principles of deep learning will be helpful and are briefly reviewed. It is hoped that this will be useful in understanding both the current limitations of machine learning and how to address them.With applications in object detection, image feature extraction, image classification, and image segmentation, artificial intelligence is facilitating high-throughput analysis of image data in a variety of biomedical imaging disciplines, ranging from radiology and pathology to cancer biology and immunology. Specifically, a growth in research on deep learning has led to the widespread application of computer-visualization techniques for analyzing and mining data from biomedical images. The availability of open-source software packages and the development of novel, trainable deep neural network architectures has led to increased accuracy in cell detection and segmentation algorithms. By automating cell segmentation, it is now possible to mine quantifiable cellular and spatio-cellular features from microscopy images, providing insight into the organization of cells in various pathologies. This mini-review provides an overview of the current state of the art in deep learning- and artificial intelligence-based methods of segmentation and data mining of cells in microscopy images of tissue.During the 2020 West Nile virus (WNV) transmission season, Greece was the most affected EU Member State. More than one third of human cases occurred in Serres regional unit in northern Greece, which is characterized by the presence of a major wetland (Kerkini lake and Strimon river). A total of 2809 Culex pipiens mosquitoes collected in Serres were grouped into 70 pools and tested for WNV. Ten (14.3%) pools were found positive, and all WNV sequences belonged to the Central European subclade of WNV lineage 2. The first human case occurred in a village nearby the lake, and all following cases occurred across the connected river and its tributaries. Similar distribution presented the sites where WNV-positive mosquitoes were detected. The number of Culex spp. see more mosquitoes per trap per night was higher in 2020 than in previous years (2017-2019). The spatial and temporal distribution of human cases and WNV-positive mosquitoes in 2020 in Serres regional unit suggest that the upsurge of the virus circulation was probably related with factors that affected the ecosystem of the wetland.Tight control of inflammatory gene expression by antagonistic environmental cues is key to ensure immune protection while preventing tissue damage. Prostaglandin E2 (PGE2) modulates macrophage activation during homeostasis and disease, but the underlying mechanisms remain incompletely characterized. Here we dissected the genomic properties of lipopolysaccharide (LPS)-induced genes whose expression is antagonized by PGE2. The latter molecule targeted a set of inflammatory gene enhancers that, already in unstimulated macrophages, displayed poorly permissive chromatin organization and were marked by the transcription factor myocyte enhancer factor 2A (MEF2A). Deletion of MEF2A phenocopied PGE2 treatment and abolished type I interferon (IFN I) induction upon exposure to innate immune stimuli. Mechanistically, PGE2 interfered with LPS-mediated activation of ERK5, a known transcriptional partner of MEF2. This study highlights principles of plasticity and adaptation in cells exposed to a complex environment and uncovers a transcriptional circuit for IFN I induction with relevance for infectious diseases or cancer.

MicroRNAs (miRNAs) have been demonstrated to be differently expressed in colorectal cancer (CRC) and were identified as biomarkers and therapeutic targets for CRC. We aimed to identify the effect of microRNA-424 (miR-424) on process of CRC.

Exosomes were obtained from bone marrow mesenchymal stem cells (BMSCs). MiR-424, transforming growth factor-β receptor 3 (TGFBR3) vimentin, S100A4, p-Smad1 expression in tissues and cells was measured. After treated with miR-424 inhibitor or TGFBR3 overexpression plasmid, the migration, invasion, cell cycle distribution and apoptosis of Lovo cells and exosomes-transfected Lovo cells were determined. The subcutaneous tumor models were established and the tumor growth was observed. The target relation between miR-424 and TGFBR3 was confirmed.

MiR-424 was upregulated while TGFBR3 was downregulated in CRC tissues. TGFBR3 was targeted by miR-424. Inhibited miR-424 or elevated TGFBR3 upregulated p-Smad1, indicating that TGFBR3 mediated the Smad1 pathway, thus regulating CRC progression. MiR-424 inhibition or TGFBR3 restoration also suppressed migration and invasion of CRC cells, arrested the CRC cells at G0/G1 phase, and promoted CRC cell apoptosis. Moreover, exosomal miR-424 from BMSCs promoted CRC development.

Inhibited exosomal miR-424 from BMSCs inhibited malignant behaviors of CRC cells by targeting TGFBR3, thus suppressing the progression of CRC.

Inhibited exosomal miR-424 from BMSCs inhibited malignant behaviors of CRC cells by targeting TGFBR3, thus suppressing the progression of CRC.The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.During development, quiescent airway basal stem cells are derived from proliferative primordial progenitors through the cell-cycle slowdown. In contrast, basal cells contribute to adult tissue regeneration by shifting from slow cycling to proliferating and subsequently back to slow cycling. Although sustained proliferation results in tumorigenesis, the molecular mechanisms regulating these transitions remain unknown. Using temporal single-cell transcriptomics of developing murine airway progenitors and genetic validation experiments, we found that TGF-β signaling decelerated cell cycle by inhibiting Id2 and contributed to slow-cycling basal cell specification during development. In adult tissue regeneration, reduced TGF-β signaling restored Id2 expression and initiated regeneration. Id2 overexpression and Tgfbr2 knockout enhanced epithelial proliferation; however, persistent Id2 expression drove basal cell hyperplasia that resembled a precancerous state. Together, the TGF-β-Id2 axis commonly regulates the proliferation transitions in basal cells during development and regeneration, and its fine-tuning is critical for normal regeneration while avoiding basal cell hyperplasia.

Autoři článku: Benjamincolon7307 (Gade Obrien)