Tylerduelund9416

Z Iurium Wiki

Verze z 3. 10. 2024, 12:04, kterou vytvořil Tylerduelund9416 (diskuse | příspěvky) (Založena nová stránka s textem „3 V vs. Ag/AgCl, indicating good Co3O4 redox behavior under alkaline conditions. The 15%-CoOx/CN photoanode displayed excellent PEC performance of up to 0.…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

3 V vs. Ag/AgCl, indicating good Co3O4 redox behavior under alkaline conditions. The 15%-CoOx/CN photoanode displayed excellent PEC performance of up to 0.16 mA cm-2 in 0.1 M KOH solution at 1.23 V vs. RHE (reversible hydrogen electrode) and long-term stability for up to 12 h. The CoOx/CN photoanodes maintained excellent PEC activities for CA removal, even under acidic and alkaline conditions conditions (pH 3-10). Probable degradation pathway of CA was proposed according to the main degradation intermediates. This study shows that the synergistic effect of p-n heterojunctions in photoelectrodes provides a new approach to the rational application of new photoanode candidates and PEC performance optimization.Improving accumulation of heavy metals (HMs) by plants is an important pathway for constructed wetland (CW) to alleviate the environmental risks caused by their release. This study aims to regulate HMs (Cr, Ni, Cu, Zn, and Cd) accumulated by Acorus calamus L. in the sandy substrate CW with different nitrogen forms, including ammonia (NH4+), nitrate (NO3‾), and NH4+/NO3‾ (11) in synthetic tailwaters. In general, the removal efficiency of HMs by CW could reach 92.4% under the initial concentrations below 500 μg/L. Accumulation percentages of HMs in the shoots and roots of plants in CW with NH4+ and NH4+/NO3‾ influents increased by 52-395% and 15-101%, respectively, when compared with that of NO3‾ treatment. Influents with NH4+ promoted plant growth of Acorus calamus L. and metabolic functions, such as carbohydrate metabolism/amino acid metabolism, related to HMs mobilization of rhizosphere bacterial communities, which might induce more organic acids and amino acids secreted by plants and microbes during their metabolic processes. These are the main reasons for the enhancive mobilization of HMs from their precipitation fractions and their uptake by plants in CW with NH4+ treatments. Moreover, the enhancement of organics secreted from plants and microbes also led to the high denitrification efficiency and nitrogen removal in CW. Overall, this study could provide a feasible method for the enhancive accumulation of HMs by wetland plants via the regulation water treatment process to appropriately increase NH4+ for CW.In this study, the common chlorinated solvent trichloroethene (TCE) was selected as the target contaminant. The aqueous solution after solubilization treatment (containing TCE and sodium dodecyl sulfate (SDS)) was used as the research object to carry out the remediation technology research of citric acid (CA) enhanced Fe(II) activation in sodium percarbonate (SPC) system. In 0.15 mM TCE and 1 critical micelle concentration (CMC) SDS solution, CA chelating Fe(II) activated SPC could effectively promote 93.2% degradation of TCE when the dosages of SPC, Fe(II) and CA were 3.0, 6.0 and 3.0 mM, respectively. SDS had a significant inhibitory effect on the degradation of TCE, and the surface tension changed after the reaction. The addition of CA greatly increased the generation of hydroxyl radicals (HO) in the system, while the removal of TCE was mainly attributed to HO, and the removed TCE was almost completely dechlorinated. The pH range from 3 to 7 could keep the TCE degradation above 80.0%. In the actual groundwater remediation, this technique could also efficiently degrade TCE (including SDS), showing a great application potential and development prospective in practice.The understandings of environmental activities and regional inventory of ship stack PAHs are very limited in Shanghai due, in part, to the lack of source-segregated analysis. To address this, measured PAHs in organic film on ship surfaces were employed to reconstruct concentrations in various compartments through a fugacity model to investigate the level, transport, fate and annual emission of ship stack PAHs in Shanghai. The results revealed that ship stack PAHs results in 11.2-181 ng L-1 and 71.0-1710 ng g-1 in water and sediment of Shanghai, respectively. After being released into air, ship stack PAHs mainly concentrated in organic films and sediments while sunk in water and sediment. Crucial mass transfer pathways include deposition of airborne and sediment PAHs. The mass loss of ship stack PAHs was primarily through air advection, followed by degradation in sediment. The ship emissions (53.7 tons annually) accounted for approximate one tenth of the regional total in Shanghai (in 2017). Additionally, shipping was estimated to release 127 tons of PAHs annually into the Shanghai section of Yangtze River. Our results suggest our fugacity-based approach can be used to estimate the regional emissions and inventory of ship stack PAHs in the surrounding environment.Water pollution is an environmental problem in constant raising because of population growing, industrial development, agricultural frontier expansion, and principally because of the lack of wastewater treatment technology to remove organic recalcitrant and toxic pollutants from industrial and domestic wastewater. Recalcitrant compounds are a serious environmental and health problem mainly due to their toxicity and potential hazardous effects on living organisms, including human beings. Conventional wastewater treatments have not been able to remove efficiently pollutants from water; however, electrochemical advanced oxidation processes (EAOPs) are able to solve this environmental concern. One of the most recent EAOPs technology is photoelectrocatalysis (PEC), it consists in applying an external bias potential to a semiconductor film placed over a conductive substrate to avoid the recombination of photogenerated electron-hole (e-/h+) pairs, increasing h+ availability and hydroxyl radicals' formation, responsible for promoting the degradation/mineralization of organic pollutants in aqueous medium. selleck compound This review summarizes the recent advances in PEC as a promising technology for wastewater treatment. It addresses the fundamentals and kinetic aspects of PEC. An analysis of photoanode materials and of the configuration of photoelectrochemical reactors is also presented, including an analysis of the influence of the main operational parameters on the treatment of contaminated water. Finally, the most recent applications of PEC are reviewed, and the challenges and perspectives of PEC in wastewater treatment are discussed.

Autoři článku: Tylerduelund9416 (Ritchie Neal)