Santosgaines0517

Z Iurium Wiki

Verze z 3. 10. 2024, 11:43, kterou vytvořil Santosgaines0517 (diskuse | příspěvky) (Založena nová stránka s textem „Older people who live in the community and need assistance with daily activities are a unique group of patients to treat in the primary care (PC) setting.…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Older people who live in the community and need assistance with daily activities are a unique group of patients to treat in the primary care (PC) setting. This study aimed to understand access-related PC needs and experiences of community-living people over 65 years of age receiving home-based assistance through the Home and Community Care (HACC) program in Melbourne, Australia. This descriptive qualitative study used thematic analysis of in-depth interviews with HACC program clients and assessment officers. Access-related needs and experiences were examined using the patient-centred access to care framework. Client (n=11) and assessment officer (n=4) interviews showed that community-living older people receiving home-based assistance from social services are able to find a GP according to their preferences; however, some challenges in access to comprehensive care exist. These challenges relate to regularity of PC attendance, out-of-pocket fees for specialist care and maintaining an enduring patient-GP relationship. GPs can play an important role in improving PC access for vulnerable older people. In particular, GPs can contribute to improving PC attendance and facilitating more affordable access to specialist care by improving systems to recall patients more regularly and developing explicit systems for linking vulnerable patients to affordable specialist services.Mucins are high molecular-weight epithelial glycoproteins and are implicated in many physiological processes, including epithelial cell protection, signaling transduction, and tissue homeostasis. Abnormality of mucus expression and structure contributes to biological properties related to human cancer progression. Tumor growth sites induce inhospitable conditions. Many kinds of research suggest that mucins provide a microenvironment to avoid hypoxia, acidic, and other biological conditions that promote cancer progression. Given that the mucus layer captures growth factors or cytokines, we propose that mucin helps to ameliorate inhospitable conditions in tumor-growing sites. Additionally, the composition and structure of mucins enable them to mimic the surface of normal epithelial cells, allowing tumor cells to escape from immune surveillance. Indeed, human cancers such as mucinous carcinoma, show a higher incidence of invasion to adjacent organs and lymph node metastasis than do non-mucinous carcinoma. In this minireview, we discuss how mucin provides a tumor-friendly environment and contributes to increased cancer malignancy in mucinous carcinoma. Navitoclax concentration [BMB Reports 2021; 54(7) 344-355].Proper targeting of the βPAK-interacting exchange factor (βPIX)/G protein-coupled receptor kinase-interacting target protein (GIT) complex into distinct cellular compartments is essential for its diverse functions including neurite extension and synaptogenesis. However, the mechanism for translocation of this complex is still unknown. In the present study, we reported that the conventional kinesin, called kinesin-1, can transport the βPIX/GIT complex. Additionally, βPIX bind to KIF5A, a neuronal isoform of kinesin-1 heavy chain, but not KIF1 and KIF3. Mapping analysis revealed that the tail of KIF5s and LZ domain of βPIX were the respective binding domains. Silencing KIF5A or the expression of a variety of mutant forms of KIF5A inhibited βPIX targeting the neurite tips in PC12 cells. Furthermore, truncated mutants of βPIX without LZ domain did not interact with KIF5A, and were unable to target the neurite tips in PC12 cells. These results defined kinesin-1 as a motor protein of βPIX, and may provide new insights into βPIX/GIT complex-dependent neuronal pathophysiology. [BMB Reports 2021; 54(7) 380-385].Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy. [BMB Reports 2021; 54(7) 356-367].Owing to rapid advancements in NGS (next generation sequencing), genomic alteration is now considered an essential predictive biomarkers that impact the treatment decision in many cases of cancer. Among the various predictive biomarkers, tumor mutation burden (TMB) was identified by NGS and was considered to be useful in predicting a clinical response in cancer cases treated by immunotherapy. In this study, we directly compared the lab-developed-test (LDT) results by target sequencing panel, K-MASTER panel v3.0 and whole-exome sequencing (WES) to evaluate the concordance of TMB. As an initial step, the reference materials (n = 3) with known TMB status were used as an exploratory test. To validate and evaluate TMB, we used one hundred samples that were acquired from surgically resected tissues of non-small cell lung cancer (NSCLC) patients. The TMB of each sample was tested by using both LDT and WES methods, which extracted the DNA from samples at the same time. In addition, we evaluated the impact of capture region, which might lead to different values of TMB; the evaluation of capture region was based on the size of NGS and target sequencing panels. In this pilot study, TMB was evaluated by LDT and WES by using duplicated reference samples; the results of TMB showed high concordance rate (R2 = 0.887). This was also reflected in clinical samples (n = 100), which showed R2 of 0.71. The difference between the coding sequence ratio (3.49%) and the ratio of mutations (4.8%) indicated that the LDT panel identified a relatively higher number of mutations. It was feasible to calculate TMB with LDT panel, which can be useful in clinical practice. Furthermore, a customized approach must be developed for calculating TMB, which differs according to cancer types and specific clinical settings. [BMB Reports 2021; 54(7) 386-391].

Autoři článku: Santosgaines0517 (Terry Cassidy)