Barbeehackett3581
The experimental determination of the velocity of a colloidal nanoparticle (vNP) has recently became a hot topic. The thermal dependence of vNP is still left to be explored although it is a valuable source of information allowing, for instance, the discernment between ballistic and diffusive regimes. Optical tweezers (OTs) constitute a tool especially useful for the experimental determination of vNP although they have only been capable of determining it at room temperature. In this work, we demonstrate that it is possible to determine the temperature dependence of the diffusive velocity of a single colloidal nanoparticle by analyzing the temperature dependence of optical forces. The comparison between experimental results and theoretical predictions allowed us to discover the impact that the anomalous temperature dependence of water properties has on the dynamics of colloidal nanoparticles in this temperature range.We show that molecular nanomagnets have a potential advantage in the crucial rush toward quantum computers. Indeed, the sizable number of accessible low-energy states of these systems can be exploited to define qubits with embedded quantum error correction. We derive the scheme to achieve this crucial objective and the corresponding sequence of microwave/radiofrequency pulses needed for the error correction procedure. The effectiveness of our approach is shown already with a minimal S = 3/2 unit corresponding to an existing molecule, and the scaling to larger spin systems is quantitatively analyzed.Optical forces on nanostructures are usually characterized by their interaction with the electric field component of the light wave, given that most materials present negligible magnetic response at optical frequencies. This is not the case however of a high-refractive-index dielectric nanoantenna, which has been recently shown to efficiently support both electric and magnetic optical modes. Endoxifen In this work, we use a photoinduced force microscopy configuration to measure optically induced forces produced by a germanium nanoantenna on a surrounding silicon near-field probe. We reveal the spatial distribution, character, and magnitude of the generated forces when exciting the nanoantenna at its anapole state condition. We retrieve optical force maps showing values of up to 20 pN, which are found to be mainly magnetic in nature, according to our numerical simulations. The results of this investigation open new pathways for the study, detection, and generation of magnetic light forces at the nanometer scale.An efficient cobalt-catalyzed [4 + 2] annulation of hydrazones and 1,3-diynes has been developed for the synthesis of 3-alkynylated isoquinolines engaging 2-aminopyridine as a traceless bidentate directing group. The strategy has been successfully extended for the synthesis of 3,3'-biisoquinoline moieties via both one-pot as well as sequential approaches. The utilization of a traceless bidentate directing group with an inexpensive and earth-abundant cobalt-catalyst under operationally simple reaction conditions makes the present transformation more valuable and appealing.Certain bird species have evolved spectacular colors that arise from organized nanostructures of melanin. Its high refractive index (∼1.8) and broadband absorptive properties enable vivid structural colors that are nonsusceptible to photobleaching. Mimicking natural melanin structural coloration could enable several important applications, in particular, for noniridescent systems with colors that are independent of incidence angle. Here, we address this by forming melanin photonic crystal microdomes by inkjet printing. Owing to their curved nature, the microdomes exhibit noniridescent vivid structural coloration, tunable throughout the visible range via the size of the nanoparticles. Large-area arrays (>1 cm2) of high-quality photonic microdomes could be printed on both rigid and flexible substrates. Combined with scalable fabrication and the nontoxicity of melanin, the presented photonic microdomes with noniridescent structural coloration may find use in a variety of applications, including sensing, displays, and anticounterfeit holograms.Photochemistry induced by phase-coherent laser light is an intriguing topic. The possibility of weak-field (one-photon) phase-only control of photoisomerization is controversial. Experimental studies on the weak-field coherent control of cis-trans isomerization have led to conflicting results. Here we address this issue by quantum dynamical calculations, focusing on a mechanism where different "phase-shaped" wave packets are quickly stabilized ("dumped") in the trans configuration because of prompt energy dissipation. We systematically investigate different relaxation rates with the system-bath dynamics described within the time-dependent Hartree approximation leading to a friction-type force. We find evidence for phase control of trans-isomer yields (about 5%) in this model with pure energy dissipation given sufficiently strong dampening.Difunctionalization of alkenes is a valuable tool for the synthesis of complicated compounds from simple precursors. Herein, a feasible method for the construction of β-trifluoromethyl-α-substituted alcohols under visible-light-induced metal-free conditions is described. This catalytic system exhibits mild reaction conditions and good compatibility of functional groups. Trifluoromethyl and alcohols are valuable structural motifs due to their unique biological properties, and this work shows the potential application in the realm of pharmacy and organic synthesis.Base-promoted benzannulation of conjugated N-sulfonylhydrazones and 3-formylchromones for the synthesis of diverse biaryl sulfones is described. The approach facilitates new C-C and C-S bond formation via the cascade diazo formation/Michael addition/ring opening/denitrogenative sulfonylation/intramolecular cycloaddition/dehydration and introduces diverse functional groups onto biaryl sulfones. The synthesized compounds are converted to aryl sulfones bearing bioactive benzisoxazole and benzofuran frameworks. Moreover, the synthesized biaryl sulfones possess potent turn-on fluorescence sensing and UV absorbance properties.