Keatingharrison6640
We conclude that without strong policies to promote recycling and upcycling of non-biodegradable waste, and the conversion of biodegradable waste to biogas, open waste burning is likely to become India's largest source of air pollution by 2035. While our study is limited to India, our findings are of relevance for other countries in the global South suffering from similar waste management challenges.Microplastics (MPs) have been reported in the outdoor/indoor air of urban centres, raising health concerns due to the potential for human exposure. Since aerosols are considered one of the routes of Coronavirus disease 2019 (COVID-19) transmission and may bind to the surface of airborne MPs, we hypothesize that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be associated with the levels of MPs in the air. Our goal was to quantify the SARS-CoV-2 RNA and MPs present in the total suspended particles (TSP) collected in the area surrounding the largest medical centre in Latin America and to elucidate a possible association among weather variables, MPs, and SARS-CoV-2 in the air. TSP were sampled from three outdoor locations in the areas surrounding a medical centre. MPs were quantified and measured under a fluorescence microscope, and their polymeric composition was characterized by Fourier transform infrared (FT-IR) microspectroscopy coupled with attenuated total reflectance (ATR). The viral load of SARS-CoV-2 was quantified by an in-house real-time PCR assay. A generalized linear model (GzLM) was employed to evaluate the effect of the SARS-CoV-2 quantification on MPs and weather variables. TSP samples tested positive for SARS-CoV-2 in 22 out of 38 samples at the three sites. Polyester was the most frequent polymer (80%) found in the samples. The total amount of MPs was positively associated with the quantification of SARS-CoV-2 envelope genes and negatively associated with weather variables (temperature and relative humidity). Our findings show that SARS-CoV-2 aerosols may bind to TSP, such as MPs, and facilitate virus entry into the human body.This study was conducted to assess the impact and efficiency of the bioaugmentation as a bioremediation technique in annoying effects of a polycyclic aromatic hydrocarbon (phenanthrene) on a community of free-living nematodes from Bizerte bay (Tunisia). For this purpose, closed microcosms were exposed to three doses of phananthrene (0.1 μg kg-1, 1 μg kg-1 and 10 μg kg-1), in combination or not with a strain of Shewanella oneidensis. After 40 days of the exposure, results were obtained at the numerical, taxonomic and feeding levels. The results of univariate analyses revealed significant decreases in most univariate indices for phenanthrene treated communities compared to controls, with a discernible increase in the proportion of epistrate feeders. After bioaugmentation, similar patterns were observed for univariate and multivariate analyses, with the exception of the highest treatment, which showed no difference from the controls. The results obtained showed that the bioaugmentation with Shewanellea oneidensis was highly effective in reducing the negative impact of the highest dose of phenanthrene (10 μg kg-1 Dry Weight) tested on meiobenthic nematodes. Furthermore, a combination of Shewanellea oneidensis and four omnivore-carnivore nematode taxa could be suggested as an effective method in the bioremediation of phenanthrene-contaminated sediment.Aggravating the pollution of microcystins (MCs) in freshwater environments is detrimental to aquatic living organisms and humans, and thus threatens the stability of ecosystems. Some environmental factors have been verified to promote the production of MCs in Microcystis aeruginosa, thereby aggravating the pollution of MCs. However, the effects of cerium (Ce), the most abundant rare earth element in global water environments, on the production of MCs in M. aeruginosa are unknown. Here, Lake Taihu water was selected as a representative of freshwater environments. By using interdisciplinary methods, it was found that (1) the exposure level of Ce [Ce(III) and Ce(IV)] in Lake Taihu water is in the range of 0.271-0.282 μg/L; (2) Ce exposure in Lake Taihu water promoted the contents of three main MCs (MC-LR, MC-LW and MC-YR) in M. aeruginosa and water; (3) a cellular mechanism of Ce promoting the production of MCs in M. 4-Phenylbutyric acid in vivo aeruginosa in Lake Taihu water was suggested Ce enhanced endocytosis in cells of M. aeruginosa to promote the essential element uptake by M. aeruginosa for MC synthesis. Thus, Ce exposure in Lake Taihu water aggravates the pollution of MCs via enhancing endocytosis in cells of M. aeruginosa. The results provide reference for assessing the environmental risk of Ce in water environments, investigating the mechanism of the pollution of MCs induced by environmental factors, and developing strategies aimed at preventing and controlling the pollution of MCs.Microplastics (MPs) are an emerging global concern as they are abundant in the environment and can act as vectors of various contaminants. However, whether and how MPs can be vectors of antibiotic resistance genes (ARGs), especially extracellular ARGs (eARGs), remains far from explicit. This study addresses the adsorption of both intracellular ARGs (iARGs) and eARGs by four types of MPs in municipal wastewater, and then explores the potential horizontal gene transfer of iARGs and eARGs exposed to MPs. Results indicate that though MPs significantly adsorbed both iARGs and eARGs, eARGs were adsorbed with a significantly higher fold enrichment (2.0-5.0 log versus 2.0-3.3 log) and rate (0.0056 min-1 versus 0.0037 min-1) than iARGs. While all four types of MPs adsorbed ARGs, polypropylene MPs showed the highest adsorption capacity for ARGs. Background constituents such as humic acid and antibiotics significantly inhibited adsorption of iARGs, but not eARGs on MPs. The presence of sodium chloride didn't significantly affect adsorption of iARGs or eARGs. The adsorption of ARGs was well explained by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) interaction energy profile. Higher eARG adsorption was attributed to a lower energy barrier between MPs and eARGs than that between MPs and iARGs. Exposure to MPs enhanced horizontal gene transfer of both iARGs and eARGs by 1.5 and 2.0 times, respectively. The improved contact potential between donors and recipients, as well as the increased cell permeability of recipients induced the improved horizontal gene transfer by MPs. This study underscores the need to address ARG propagation through adsorption to MPs.Fine particulate matter cause profound adverse health effects in Iran. Road traffic is one of the main sources of particulate matter (PM) in urban areas, and has a large contribution in PM2.5 and organic carbon concentration, in Tehran, Iran. The composition of fine PM vehicle emission is poorly known, so this paper aims to determine the mixed fleet source profile by using the analysed data from the two internal stations and the emission factor for PM light-duty vehicles emission. Tunnels are ideal media for extraction vehicle source profile and emission factor, due to vehicles are the only source of pollutant in the urban tunnels. In this study, PM samples were collected simultaneously in two road tunnel stations and at a background site in Niyayesh tunnel in Tehran, Iran. The tunnel samples show a large contribution for some elements and ions, such as Fe (0.23 μg μg-1 OC), Al (0.02 μg μg-1 OC), Ca (0.055 μg μg-1 OC), SO4 (0.047 μg μg-1 OC), Docosane (0.0017 μg μg-1 OC), Triacontane (0.016 μg μg-1 OC), Anthracenedione (0.0003 μg μg-1 OC) and Benzo-perylene (0.0002 μg μg-1 OC). In overall, on-road gasoline vehicle fleets source profile extracted in this study is similar to composite profiles derived from roadside tunnel measurment performed in other countries during the last decades. The PM2.5 emission factor for Tehran's light-duty vehicle fleet has been extracted 16.23 mg km-1. vehicle-1and 0.09 g kg-1. The profile would be used for Chemical Mass Balance Model studies for Iran and other countries with a similar road traffic fleet mix. Also, it would be very suitable for use in emission inventories improvement. The results of this study can be used for choosing the best management strategies and provide comperhensive insight to fine PM traffic emission in Tehran.There are large knowledge gaps concerning environmental levels and fate of many organic pollutants, particularly for chemicals of emerging concern in tropical regions of the Global South. In this study, we investigated the levels of chlorinated paraffins (CPs) and dechloranes in air and soil in rural, suburban, and urban regions in and around Dar es Salaam, Tanzania. Samples were also collected near the city's main municipal waste dumpsite and an electronic waste (e-waste) handling facility. In passive air samples, short chain CPs (SCCPs) dominated, with an average estimated concentration of 22 ng/m3, while medium chain CPs (MCCPs) had an average estimated concentration of 9 ng/m3. The average estimated air concentration of ∑dechloranes (Dechlorane Plus (DP) + Dechlorane 602 + Dechlorane 603) was three to four orders of magnitudes lower, 2 pg/m3. In soil samples, MCCPs dominated with an average concentration of 640 ng/g dw, followed by SCCPs with an average concentration of 330 ng/g dw, and ∑dechloranes with an average concentration of 0.9 ng/g dw. In both air and soil, DP was the dominating dechlorane compound. Urban pulses were observed for CPs and dechloranes in air and soil. CPs were in addition found in elevated levels at the municipal waste dumpsite and the e-waste handling facility, while DPs were found in elevated levels at the e-waste handling facility. This suggests that waste handling sites represent important emission sources for these pollutants. Investigations into seasonal trends and environmental fate of CPs and dechloranes showed that monsoonal rain patterns play a major role in governing air concentrations and mobility, particularly for the less volatile MCCPs and dechloranes. This study is the first to report levels of CPs in air from sub-Saharan Africa, and DP, Dechlorane 602, and Dechlorane 603 in soil from sub-Saharan Africa.
. A major, prolonged measles outbreak occurred in Israel during 2018-19, despite vaccination coverage rates of 97% and 96% for the first and second doses, respectively, of measles containing vaccine (MCV).
. To study the causes and patterns of the outbreak through analysis of the epidemiological data, review the control measures taken, and identify lessons learned and efforts needed to prevent recurrences.
. All reported cases of measles in Israel from 1 March 2018 through 30 September 2019 were analysed using the epidemiological, clinical, laboratory, and demographic data that are systematically reported to the Division of Epidemiology of the Ministry of Health.
. A total of 4,311 measles cases were reported. 75% of case patients were children and 25% were adults. Pockets of undervaccination and delayed vaccination were identified 72.6% of measles patients whose vaccination histories were known had not received any doses of MCV. Case importation was also a key factor, with a majority being adults coming from European countries and over half from Ukraine, a major locus of measles cases during the recent measles resurgence in Europe.