Lausenmcdaniel8635

Z Iurium Wiki

Verze z 2. 10. 2024, 21:40, kterou vytvořil Lausenmcdaniel8635 (diskuse | příspěvky) (Založena nová stránka s textem „To characterize national trends in urologist workforce, practice organization, and management of incident prostate cancer.<br /><br /> Using Medicare claim…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

To characterize national trends in urologist workforce, practice organization, and management of incident prostate cancer.

Using Medicare claims data from 2010 to 2016, we identified all urologists billing Medicare and the practice with which they were affiliated. We characterized groups as solo, small single specialty, large single specialty, multispecialty, specialist, or hospital-owned practices. Using a 20% sample of national Medicare claims, we identified all patients with incident prostate cancer and identified their primary treatment.

The number of urologists increased from 9,305 in 2010 to 9,570 in 2016 (P = .03), while the number of practices decreased from 3,588 to 2,861 (P < .001). The proportion of urologists in multispecialty groups increased from 17.1% in 2010 to 28.2% in 2016, while those within solo practices declined from 26.2% to only 15.8% over the same time period. A higher proportion of patients at hospital-owned practices were treated with observation (P < .001) and surgery (P < .001), while a higher proportion of patients at large single specialty practices were treated with radiation therapy (P < .001).

We characterized shifts in urologist membership from smaller, independent groups to larger, multispecialty or hospital-owned practices. This trend coincides with higher utilization of observation and surgical treatment for prostate cancer.

We characterized shifts in urologist membership from smaller, independent groups to larger, multispecialty or hospital-owned practices. This trend coincides with higher utilization of observation and surgical treatment for prostate cancer.This study describes the development of Avidin-Biotin recombinant Antigen Capture ELISA (ABrAC ELISA) for the detection of the peste des petits ruminants virus (PPRV) antigens in the clinical specimens of sheep and goats. The assay uses the truncated recombinant PPRV N-terminal immunogenic region of nucleoprotein (rPPRV-NPN) as a reference positive antigen and its polyclonal antibodies as capture/detective antibodies and the rabbit PPRV polyclonal antibodies as coating antibodies. The cut-off value was determined as double times the mean reactivity of blank control based on the reactivity of the PPR confirmed negative and positive control panel samples. On assessing the specificity with the related differential diagnosis of the disease-causing viruses and bacteria, the assay showed specific detective reactivity to PPRV. Further, on evaluation using clinical specimens (n-274) of sheep and goats, the assay showed that the relative diagnostic sensitivity of 86.49 % (95 % confidence interval (CI) 71.23-95.46 %) and diagnostic specificity of 96.20 % (95 % CI 92.91-98.25 %) against PPRV nucleoprotein-specific monoclonal antibody-based sandwich-ELISA (PPR s-ELISA) kit, with an accuracy of 94.89 % (95 % CI 91.58-97.18 %) and Cohen's Kappa value of 0.791 + 0.055 SE (95 % CI 0.68-0.90) with substantial agreements. The ABrAC-ELISA is an alternative method of an immunoassay for the rapid, sensitive, and specific detection of the PPRV antigens m the clinical specimens of sheep and goats for surveillance or diagnosis of PPR. This study also shows that the rPPRV-NPN and its specific polyclonal antibodies could be the sustainable source of safe diagnostic reagents without the need to handle the infectious virus during the eradication and post-eradication phases in endemic countries like India or PPR non-endemic countries.The tribe Oryzomyini is an impressive group of rodents, comprising 30 extant genera and an estimated 147 species. Recent remarkable advances in the understanding of the diversity, taxonomy and systematics of the tribe have mostly derived from analyses of single or few genetic markers. However, the evolutionary history and biogeography of Oryzomyini, its origin and diversification across the Neotropics, remain unrevealed. Here we use a multi-locus dataset (over 400 loci) obtained through anchored phylogenomics to provide a genome-wide phylogenetic hypothesis for Oryzomyini and to investigate the tempo and mode of its evolution. Species tree and supermatrix analyses produced topologies with strong support for most branches, with all genera confirmed as monophyletic, a result that previous studies failed to obtain. Our analyses also corroborated the monophyly and phylogenetic relationship of three main clades of Oryzomyini (B, C and D). The origin of the tribe is estimated to be in the Miocene (8.93-5.38 million years ago). The cladogenetic events leading to the four main clades occurred during the late Miocene and early Pliocene and most speciation events in the Pleistocene. Geographic range estimates suggested an east of Andes origin for the ancestor of oryzomyines, most likely in the Boreal Brazilian region, which includes the north bank of Rio Amazonas and the Guiana Shield. Oryzomyini rodents are an autochthonous South America radiation, that colonized areas and dominions of this continent mainly by dispersal events. The evolutionary history of the tribe is deeply associated with the Andean cordillera and the landscape history of Amazon basin.Mitochondrial genomes are frequently applied in phylogenetic and evolutionary studies across metazoans, yet they are still poorly represented in many groups of invertebrates, including annelids. Here, we report ten mitochondrial genomes from the annelid genus Hydroides (Serpulidae) and compare them with all available annelid mitogenomes. We detected all 13 protein coding genes in Hydroides spp., including the atp8 which was reported as a missing gene in the Christmas Tree worm Spirobranchus giganteus, another annelid of the family Serpulidae. All available mitochondrial genomes of Hydroides show a highly positive GC skew combined with a highly negative AT skew - a feature consistent with that found only in the mitogenome of S. giganteus. In addition, amino acid sequences of the 13 protein-coding genes showed a high genetic distance between the Hydroides clade and S. selleckchem giganteus, suggesting a fast rate of mitochondrial sequence evolution in Serpulidae. The gene order of protein-coding genes within Hydroides exhibited extensive rearrangements at species level, and were different from the arrangement patterns of other annelids, including S. giganteus. Phylogenetic analyses based on protein-coding genes recovered Hydroides as a monophyletic group sister to Spirobranchus with a long branch, and sister to the fan worm Sabellidae. Yet the Serpulidae + Sabellidae clade was unexpectedly grouped with Sipuncula, suggesting that mitochondrial genomes alone are insufficient to resolve the phylogenetic position of Serpulidae within Annelida due to its high base substitution rates. Overall, our study revealed a high variability in the gene order arrangement of mitochondrial genomes within Serpulidae, provided evidence to question the conserved pattern of the mitochondrial gene order in Annelida and called for caution when applying mitochondrial genes to infer their phylogenetic relationships.We evaluated the role of Quaternary climatic fluctuations on the demographic history and population structure of amphibian species endemic to the 'campo rupestre' in the Neotropics, evaluating their distributional shifts, demographic changes, and lineage formation from the end of Pleistocene to present. We chose two anurans endemic to the high-elevation 'campo rupestre' in the Espinhaço Range (ER) in northeastern and southeastern Brazil (Bokermannohyla alvarengai and Bokermannohyla oxente), as models to test the role of Quaternary climatic fluctuations over their distribution range in this region. We collected tissue samples throughout their distribution range and used statistical phylogeography to examine processes of divergence and population demography. We generated spatial-temporal reconstructions using Bayesian inference in a coalescent framework in combination with hind-cast projections of species distribution models (SDMs). We also used the results and literature information to test alternative diversiation gradients in tropical and subtropical domains. Such processes may influence the evolution of the biota distributed in heterogeneous landscapes with varied topography.Some tropical plant families, such as the Sapotaceae, have a complex taxonomy, which can be resolved using Next Generation Sequencing (NGS). For most groups however, methodological protocols are still missing. Here we identified 531 monocopy genes and 227 Short Tandem Repeats (STR) markers and tested them on Sapotaceae using target capture and NGS. The probes were designed using two genome skimming samples from Capurodendron delphinense and Bemangidia lowryi, both from the Tseboneae tribe, as well as the published Manilkara zapota transcriptome from the Sapotoideae tribe. We combined our probes with 261 additional ones previously published and designed for the entire angiosperm group. On a total of 792 low-copy genes, 638 showed no signs of paralogy and were used to build a phylogeny of the family with 231 individuals from all main lineages. A highly supported topology was obtained at high taxonomic ranks but also at the species level. This phylogeny revealed the existence of more than 20 putative new species. Single nucleotide polymorphisms (SNPs) extracted from the 638 genes were able to distinguish lineages within a species complex and to highlight geographical structuration. STR were recovered efficiently for the species used as reference (C. delphinense) but the recovery rate decreased dramatically with the phylogenetic distance to the focal species. Altogether, the new loci will help reaching a sound taxonomic understanding of the family Sapotaceae for which many circumscriptions and relationships are still debated, at the species, genus and tribe levels.The molluscan class Gastropoda includes over 5,000 parasitic species whose evolutionary origins remain poorly understood. Marine snails of the genus Caledoniella (Caledoniellidae) are obligate parasites that live on the abdominal surface of the gonodactylid mantis shrimps. They have highly modified morphological characteristics specialized to the ectoparasitic lifestyle that make it difficult to infer their close relatives, thereby posing a question about their current systematic position in the superfamily Vanikoroidea. In the present study, we performed molecular phylogenetic analyses using three nuclear and three mitochondrial gene sequences to unveil the phylogenetic position of these enigmatic snails. The resulting trees recovered Caledoniella in the superfamily Truncatelloidea and within a subclade of commensal species that live on the burrow wall of marine benthic invertebrates. More specifically, Caledoniella formed the sister clade to a commensal snail species living in mantis-shrimp burrows and they collectively were sister to Sigaretornus planus (formerly in the family Tornidae or Vitrinellidae), a commensal living in echiuran burrows. This topology suggests that the species of Caledoniella achieved their ectoparasitic mode of life through the following evolutionary pathway (1) invasion into the burrows of benthic invertebrates, (2) specialization to mantis shrimps, and (3) colonization of the host body surface from the host burrow wall with the evolution of the parasitic nature. The final step is likely to have been accompanied by the acquisition of a sucker on the metapodium, the loss of the radula and operculum, and the formation of monogamous pair bonds. The present molecular phylogeny also suggested parallel evolution of planispiral shells in a subclade of Truncatelloidea and enabled us to newly redefine the families Caledoniellidae, Elachisinidae, Teinostomatidae, Tornidae and Vitrinellidae.

Autoři článku: Lausenmcdaniel8635 (Palm Sharma)