Pridgendalton2150

Z Iurium Wiki

Verze z 2. 10. 2024, 21:35, kterou vytvořil Pridgendalton2150 (diskuse | příspěvky) (Založena nová stránka s textem „The superior accuracy of spin-PLDM is demonstrated in this paper through application of the method to a wide range of spin-boson models as well as to the F…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The superior accuracy of spin-PLDM is demonstrated in this paper through application of the method to a wide range of spin-boson models as well as to the Fenna-Matthews-Olsen complex.Localized basis sets in the projector augmented wave formalism allow for computationally efficient calculations within density functional theory (DFT). However, achieving high numerical accuracy requires an extensive basis set, which also poses a fundamental problem for the interpretation of the results. We present a way to obtain a reduced basis set of atomic orbitals through the subdiagonalization of each atomic block of the Hamiltonian. The resulting local orbitals (LOs) inherit the information of the local crystal field. In the LO basis, it becomes apparent that the Hamiltonian is nearly block-diagonal, and we demonstrate that it is possible to keep only a subset of relevant LOs that provide an accurate description of the physics around the Fermi level. This reduces to some extent the redundancy of the original basis set, and at the same time, it allows one to perform post-processing of DFT calculations, ranging from the interpretation of electron transport to extracting effective tight-binding Hamiltonians, very efficiently and without sacrificing the accuracy of the results.We investigate memory effects in barrier-crossing in the overdamped setting. We focus on the scenario where the hidden degrees of freedom relax on exactly the same time scale as the observable. As a prototypical model, we analyze tagged-particle diffusion in a single file confined to a bi-stable potential. We identify the signatures of memory and explain their origin. VX-765 inhibitor The emerging memory is a result of the projection of collective many-body eigenmodes onto the motion of a tagged-particle. We are interested in the "confining" (all background particles in front of the tagged-particle) and "pushing" (all background particles behind the tagged-particle) scenarios for which we find non-trivial and qualitatively different relaxation behaviors. Notably and somewhat unexpectedly, at a fixed particle number, we find that the higher the barrier, the stronger the memory effects are. The fact that the external potential alters the memory is important more generally and should be taken into account in applications of generalized Langevin equations. Our results can readily be tested experimentally and may be relevant for understanding transport in biological ion-channels.Mesoporous materials play an important role both in engineering applications and in fundamental research of confined fluids. Adsorption goes hand in hand with the deformation of the absorbent, which has positive and negative sides. It can cause sample aging or can be used in sensing technology. Here, we report the theoretical study of adsorption-induced deformation of the model mesoporous material with ordered corrugated cylindrical pores. Using the classical density functional theory in the local density approximation, we compared the solvation pressure in corrugated and cylindrical pores for nitrogen at sub- and super-critical temperatures. Our results demonstrate qualitative differences between solvation pressures in the two geometries at sub-critical temperatures. The deviations are attributed to the formation of liquid bridges in corrugated pores. However, at super-critical temperatures, there is no abrupt bridge formation and corrugation does not qualitatively change solvation pressure isotherms. We believe that these results could help in the analysis of an adsorption-induced deformation of the materials with distorted pores.Frenkel exciton population dynamics of an excitonic dimer is studied by comparing the results from a quantum master equation involving rates from second-order perturbative treatment with respect to the excitonic coupling with the non-perturbative results from "Hierarchical Equations of Motion" (HEOM). By formulating generic Liouville-space expressions for the rates, we can choose to evaluate them either via HEOM propagations or by applying the cumulant expansion. The coupling of electronic transitions to bath modes is modeled either as overdamped oscillators for the description of thermal bath components or as underdamped oscillators to account for intramolecular vibrations. Cases of initial nonequilibrium and equilibrium vibrations are discussed. In the case of HEOM, initial equilibration enters via a polaron transformation. Pointing out the differences between the nonequilibrium and equilibrium approach in the context of the projection operator formalism, we identify a further description, where the transfer dynamics is driven only by fluctuations without involvement of dissipation. Despite this approximation, this approach can also yield meaningful results in certain parameter regimes. While for the chosen model, HEOM has no technical advantage for evaluation of the rate expressions compared to cumulant expansion, there are situations where only evaluation with HEOM is applicable. For instance, a separation of reference and interaction Hamiltonian via a polaron transformation to account for the interplay between Coulomb coupling and vibrational oscillations of the bath at the level of a second-order treatment can be adjusted for a treatment with HEOM.We theoretically study the effect of external deformation on activated structural relaxation and aspects of the nonlinear mechanical response of glassy hard sphere fluids in the context of elastically collective nonlinear Langevin equation theory. This microscopic force-based approach describes activated relaxation as a coupled local-nonlocal event involving caging and longer range collective elasticity, with the latter becoming more important and ultimately dominant with increasing packing fraction under equilibrium conditions. The central new question we address is how this physical picture of activated relaxation, and the relative importance of local caging vs collective elasticity physics, depends on external deformation. Theoretical predictions are presented for deformation-induced enhancement of mobility, the onset of relaxation speed up at remarkably low values of stress, strain, or shear rate, apparent power law thinning of the steady state structural relaxation time and viscosity, a non-vanishing activation barrier in the shear thinning regime, an apparent Herschel-Bulkley form of the rate dependence of the steady state shear stress, exponential growth of different measures of a dynamic yield or flow stress with the packing fraction, and reduced fragility and dynamic heterogeneity under deformation.

Autoři článku: Pridgendalton2150 (Torp Sloth)