Barefootdodson1674
Nickel nanoparticles (Ni NPs) have a wide range of application prospects, however there is still a lack of their safety evaluation for the reproductive system. Nowadays, male reproductive health has been widely concerned for the increasing incidence of male infertility. To investigate the male reproductive toxicity induced by Ni NPs and its relation with the mitochondrial fission and mitophagy, male mice were administered with or without 5, 15, and 45 mg/kg of Ni NPs by intratracheal instillation. At the end of intervention, sex hormone level, sperm abnormality rate, pathological morphology of testis, cell apoptosis and the expression levels of Drp1, Pink1 and Parkin proteins in testis tissues were detected. The results indicated that the rate of sperm deformity and serum levels of reproductive hormones increased obviously with the increasing concentrations of Ni NPs. Testicular spermatogenic cells were damaged and the number of apoptotic cells increased significantly. Furthermore, the expressions of key proteins (Drp1, Pink1 and Parkin) related to mitochondrial fission/autophagy in testis tissues also increased after exposure to Ni NPs. Collectively, mitochondria damage may play an important role in male mice reproductive toxicity induced by the intratracheal instillation of Ni NPs.The use of nanotechnology and engineered nanomaterials in food and agriculture (nano-agrifood) sectors is intended to provide several potential benefits to consumers and society, such as the provision of more nutritious processed foods, edible food coatings to extend shelf lives of fresh cut produce, and more sustainable alternatives to traditional agrochemicals. The responsible innovation of nano-agrifoods may be particularly important to pursue given previous case studies involving other agrifood technologies that experienced significant public consternation. Here, we define responsible innovation following Stilgoej et al. (2013) that establishes processes to iteratively review and reflect upon one's innovation, engage stakeholders in dialogue, and to be open and transparent throughout innovation stages - processes that go beyond primary focuses of understanding environmental, health, and safety impacts of nano-enabled products and implementing safe-by-design principles. Despite calls for responsible nano-ikey barriers across three main nano-innovation phases, including 1) Scientific and Technical R&D, 2) Product Oversight, and 3) Post-commercialization Marketability & Use, and discuss how these barriers may impact stakeholders as well as present opportunities to align with principles of responsible innovation. Overall, these findings may help illuminate challenges that researchers and innovators face in the pursuit of responsible innovation relevant for the field of nanotechnology with relevancy for other emerging food and agricultural technologies more broadly.Sequential pretreatment using different NaOH concentrations (0.5%, 1.0%, 1.5%, w/w) and 1% H2SO4 (w/w) was evaluated as a strategy for effective hydrolysis of rice straw. The efficiency of sequential NaOH and H2SO4 (SNA) pretreatment against sequential H2SO4 and NaOH (SH) was assessed. SH pretreated biomass attained more sugar yield compared to SNA pretreated biomass. The sugar yields from pretreated biomass improved with increasing NaOH concentration in both SH and SNA treatments. The maximum sugar release of 40.6 mg/ml (83.2% efficiency) was obtained from SH pretreated biomass when the stage 2 alkali treatment was performed at 1.5% w/w NaOH. The non-detoxified hydrolysate from this biomass was fermented with 96.8% efficiency.Silver nanoparticles (AgNPs) are a common antimicrobial additive for a variety of applications, including wound care. However, AgNPs often undergo dissolution resulting in release of silver ions, with subsequent toxicity to mammalian cells. The cornea is a primary exposure site to topically administered AgNPs in and around the eye but their impact on corneal wound healing is understudied. Thus, the purpose of this study was to determine in vitro toxicity of AgNPs on corneal epithelial cells and fibroblasts as well as their effects on corneal epithelial wound healing utilizing an in vivo rabbit model. Non-coated 20 nm sized AgNP (AgNP-20) as well as 1% and 10% silver silica NPs (AgSiO2NPs) were tested at concentrations ranging from 0.05-250 μg/mL. Immortalized human corneal epithelial (hTCEpi) cells and primary rabbit corneal fibroblasts (RCFs) were incubated for 24 h with AgNPs and cell viability was tested. Additionally, a round wound healing assay was performed to determine hTCEpi cell migration. QuantitatiSiO2NPs penetrated throughout all corneal layers and into the anterior chamber in all treated eyes with no histopathological changes observed. In conclusion, the 1%-AgSiO2NPs are safe and have potential therapeutic applications through its efficacy of the corneal penetration and reduced scar formation during corneal wound healing.To date, there has been little published work that has elicited diverse stakeholder views of nano-agrifoods and of how nano-agrifoods align with the goals of responsible innovation. This paper aims to fill this research gap by investigating views of nano-agrifoods, how well their development adheres to principles of responsible innovation, and potential challenges for achieving responsible nano-agrifood innovation. Using an online engagement platform, we find that U.S. stakeholder views of responsible innovation were dominated by environmental, health, and safety (EHS) contexts, considerations of societal impacts, opportunities for stakeholder engagement, and responding to societal needs. These views overlap with scholarly definitions of responsible innovation, albeit stakeholders were more focused on impacts of products, while the field of responsible innovation strives for more "upstream" considerations of the process of innovation. We also find that views of nano-agrifoods differed across applications with dietary supplements and improved whitening of infant formula viewed least favorably, and environmental health or food safety applications viewed most favorably. Proteasome inhibitor These findings align with the larger body of literature, whereby stakeholders are expected to be more supportive of nanotechnology used in agricultural applications compared to directly within food and food supplements. Overall, participants indicated they held relatively neutral views on research and innovation for nano-agrifoods being conducted responsibly, and they identified key challenges to ensuring their responsible innovation that were related to uncertainties in EHS studies, the need for public understanding and acceptance, and adequate regulation. In light of these results, we recommend future research efforts on EHS impacts and risk-benefit frameworks for nano-agrifoods, better understanding stakeholder views on what constitutes effective regulation, and addressing challenges with effective regulation and responsible innovation practices.Phytotoxicity of nanoceria (nCeO2) has been reported, but there are few studies on how to reduce its phytotoxicity. In the present study, we modified nCeO2 with two organophosphates (nCeO2@ATMP and nCeO2@EDTMP) and compared their toxicity to lettuce with that of uncoated nCeO2. The results showed that bare nCeO2 significantly inhibited the root growth of lettuce, leading to oxidative damages and root cell death. In contrast, after surface modification, the toxicity of nCeO2@ATMP to lettuce was weakened, while nCeO2@EDTMP was nontoxic to lettuce. It was found that the surface properties of the modified materials have been changed, resulting in sharp decreases in their bioavailability. Although nCeO2 with and without surface coatings were all transformed when interacting with plants, the absolute contents of Ce(III) in roots treated with modified nCeO2 decreased significantly, which may be the main reason for the reduction of toxicity. This study indicates that it is feasible to reduce the phytotoxicity of nanomaterials through surface coating.Nano-enabled agriculture becomes a new and rapidly evolving area of research, particularly, nanomaterials (NMs) with light-harvesting capacities for enhancing photosynthesis. However, mechanisms for the interactions between these NMs and plants are not fully understood. Herein, fluorescent and water-soluble graphitic carbon nitride (g-C3N4) nanosheets were prepared and used as artificial antenna to amplify light harvesting ability and enhance photosynthesis in maize. Upon root exposure to 10 mg·L-1 g-C3N4 nanosheets, the g-C3N4 can be taken up and distributed in leaves. Also, the nutrients (Mg, P, Fe, and Mn), chlorophyll content, electron transfer rate, net photosynthetic rate, and carbohydrates content in maize were increased significantly by 1.1%, 51.8%, 44.6%, 121.8%, 12.1%, 44.5%, 30.0% and 32.3%, respectively. In addition, the gene expressions of psbA (photosystem II reaction center protein A) and psaA (photosystem I P700 chlorophyll A apoprotein A1) were up-regulated by 56.3% and 26.8%, respectively. Moreover, the activities of phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were significantly increased by 242.3% and 156.3%, respectively. This study provides a new perspective on the use of g-C3N4 nanosheets to promote plant growth and develop nano-enabled agricultural technology.This study focused on the effects of surface coating, acquired through the interaction with natural biomolecules, on the behavior and ecotoxicity of nanoparticles (NPs). To this aim, the effects of Cerium Oxide Nanoparticles (CeO2NPs) naked and coated with chitosan and alginate on the marine mussel Mytilus galloprovincialis were compared. Mussels were exposed for 7 days to 100 μg L-1 of CeO2NPs and for 28 days to 1 μg L-1 of CeO2NPs. In both experiments CeO2NPs were used naked and coated with the two polysaccharides. The lowest tested concentration allowed to understand the environmental relevance of this biological process. A set of biomarkers related to oxidative stress/damage and energy metabolism was applied to assess the ecotoxicity of CeO2NPs. The aggregation and stability in water of CeO2NPs were measured through dynamic light scattering analysis and the levels of Ce in the exposure media and in mussels soft tissues were determined by inductively coupled plasma-mass spectrometry. Results showed a diffealtering the interaction towards organisms.Increasing applications of nanoparticles (NPs) in agriculture have raised potential risks to soil and aquatic ecosystems. A comparative study examining the transport of commonly used NPs in porous media is of critical significance for their application and regulation in agroecosystems. In this study, laboratory column leaching experiments were conducted to investigate the transport and retention of polysuccinimide NPs (PSI-NPs) in two saturated porous media with different grain sizes, as compared with multi-walled carbon nanotubes (MWCNTs), nano-Ag and nano-TiO2. Zeta potential of the NPs was negative at pH6.3 and decreased in an order of PSI-NPs > nano-TiO2 > MWCNTs > nano-Ag. The coarse and fine sands used in this study had negative charges with similar zeta potentials. The movement of NPs was affected by grain size, with larger sizes facilitating mobility while finer sizes favoring retention of NPs in the porous matrix. The retention profile significantly varied between the two sand columns, with more NPs transported to deeper layers in the coarse sand than the fine sand.