Gramfleming4745

Z Iurium Wiki

Verze z 2. 10. 2024, 21:27, kterou vytvořil Gramfleming4745 (diskuse | příspěvky) (Založena nová stránka s textem „Under the excitation of a 980 nm excitation light, the fluorescence signals of the synthesized core-shell NaYF4Yb@NaYF4Ho and monolayer NaYF4Yb,Tm upconver…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Under the excitation of a 980 nm excitation light, the fluorescence signals of the synthesized core-shell NaYF4Yb@NaYF4Ho and monolayer NaYF4Yb,Tm upconversion nanoparticles (UCNPs) were simultaneously detected at 656 and 696 nm, respectively. The two upconversion materials were coupled with anti-clothianidin and anti-imidacloprid monoclonal antibodies by the glutaraldehyde cross-linking method as signal probes. Imidacloprid (IMI) and clothianidin (CLO) could compete with antigen-conjugated amino Fe3O4 magnetic nanomaterials for binding to signaling probes, thus establishing a rapid and sensitive fluorescent immunoassay for the simultaneous detection of IMI and CLO. Under optimal conditions, the limits of detection (LOD, IC10) and sensitivity (IC50) of IMI and CLO were (0.032, 0.028) and (4.7, 2.1) ng/mL, respectively, and the linear assay ranges were at 0.032-285.75 ng/mL and 0.028-200 ng/mL, respectively. Immunoassay did not cross-react significantly with other analogs. In fruits and vegetables such as apples, oranges, peaches, cucumbers, tomatoes and peppers, the mean recoveries of IMI and CLO ranged from 83.33% to 115.02% with relative standard deviations (RSDs) of 1.9% to 9.2% and 1.2% to 9.0%, respectively. Furthermore, the results of the immunoassay correlate well with the high-performance liquid chromatography method used to detect the actual samples.Soft bread has a significant relevance in modern diets, and its nutritional impact on human health can be substantial. Within this product category, there is an extensive range of ingredients, formulations, and processing methods, which all contribute to the vast diversity found in the final products. This work compared the impact of three different processing methods (industrial, artisanal, and homemade preparation) on the technological (formulation and processing, as they are interconnected in real-life conditions), nutritional, and physicochemical properties of soft bread. In total, 24 types of soft bread were analyzed 10 industrial, 6 artisanal, and 8 homemade. Although production diagrams were similar among the three methods, industrial recipes contained on average more ingredients and more additives. Industrial bread was lower in saturated fat compared to the other two groups, but contained more sugar than homemade bread. MM-102 order The physical properties of all loaves were comparable, with the exception of higher crumb elasticity in industrial bread compared to homemade. An analysis of volatile molecules revealed more lipid oxidation markers in industrial bread, more fermentation markers in artisanal bread, and fewer markers of Maillard reactions in homemade bread. Chemical reactions during processing seem to be the principal criterion making possible to discriminate the different processing methods. These results offer a quantitative assessment of the differences within a single product category, reflecting the real-world choices for consumers.Cold-smoked (CS) salmon contains high levels of sodium salts, and excess dietary sodium intake is associated with an array of health complications. CS salmon may also represent a food safety risk due to possible presence and growth of the foodborne pathogen Listeria monocytogenes which may cause fatal human infections. Here we determine how reformulated CS salmon using commercial sodium-reduced salt replacers containing KCl (e.g., Nutek, Smart Salt, SOLO-LITE) and acetate-based preservative salts (Provian K, proviant NDV) affect sensory properties, quality, and microbial safety. Initial sensory screening of sodium-reduced CS salmon was followed by L. monocytogenes growth analyses in selected variants of reformulated CS salmon, and finally by analyses of CS salmon variants produced in an industrial smokehouse. Projective mapping indicated overall minor sensory changes in sodium-replaced samples compared with a conventional product with NaCl. Growth of L. monocytogenes was temperature-dependent (4 °C vs. 8 °C storage) with similar growth in sodium-reduced and conventional CS salmon. The addition of 0.9% of the preservative salts Provian K or Provian NDV gave up to 4 log lower L. monocytogenes counts in both sodium-reduced and conventional cold-smoked salmon after 29 days of chilled storage. No changes in pH (range 6.20-6.33), aw levels (range 0.960-0.973), or weight yield (96.8 ± 0.2%) were evident in CS salmon with salt replacers or Provian preservative salts. Analyses of CS salmon produced with selected mineral salt and preservative salt combinations in an industrial salmon smokery indicated marginal differences in sensory properties. Samples with the preservative salt Provian NDV provided L. monocytogenes growth inhibition and low-level total viable counts (<2.8 log/g) dominated by Photobacterium and Carnobacterium during storage. Production of sodium-reduced CS salmon with inhibiting salts provides a simple method to achieve a healthier food product with increased food safety.Edible flowers (EFs) are currently consumed as fresh products, but their shelf life can be extended by a suitable drying technique, avoiding the loss of visual quality and valuable nutraceutical properties. Begonia cucullata Willd is a common ornamental bedding plant, and its leaves and flowers are edible. In this work, B. cucullata red flowers were freeze-dried (FD) and hot-air dried (HAD) at different temperatures. To the best of our knowledge, our study is the first one comparing different drying methodologies and different temperatures involving sensory characterization of EFs; therefore, a codified method for the description of the sensory profile of both fresh and dried B. cucullata was developed and validated. Phytochemical analyses highlighted the better preservation of antioxidant compounds (polyphenols, flavonoids and anthocyanins) for flowers dried at 60-70 °C. Visual quality was strongly affected by the drying treatments; in particular the color of the HAD samples significantly turned darker, whereas the FD samples exhibited a marked loss of pigmentation. Although all drying conditions led to a reduction in the hedonic indices if compared with fresh flowers, the best results in terms of organoleptic properties were obtained when the drying temperature was set to 60 or 70 °C.Dichloroanilines and phthalic acid esters (phthalates) are food contaminants, stable in solution even at high temperatures, which exhibit considerable toxic effects, while acting as endocrine disruptors. In the present study, a quick and easy UHPLC-MS/MS method for simultaneously analyzing two dichloroanilines (3,4-DCA and 3,5-DCA) and six phthalates (DMP, DnBP, BBP, DnOP, DEHP, and mBP) in commercial rice samples was developed, validated, and applied. For the cleanup process, the methodology of quick, easy, cheap, effective, rugged, and safe (QuEChERS) was applied, whereas different dispersants (GCB, C18, and PSA) were tested. What was developed and presented had limits of detection ranging from 0.017 up to 0.12 mg/kg, recoveries (trueness) below 120%, and relative standard deviations (RSD; precision) <15% for all target analytes, whilst no significant matrix effects occurred for all analytes. It was determined that the rice samples analyzed using this developed technique did not contain any of the two dichloroaniline compounds (3,4-DCA and 3,5-DCA) nor two of the six phthalate (DMP and mBP) compounds analyzed, while the levels of other phthalates (DEHP, BBP, DnBP and DnOP) were within the legal limits. The current method ensures a fast and easy approach for the high-throughput quantification of the selected food contaminants in rice.The world production of olive oil represented 3.1 million tons in 2021 and the choice aimed at high quality extra virgin olive oils is increasingly appearing (IOC, 2022). Moreover, the production of a product of quality with environmental respect is grown in demand. Consequently, the so-called "ecological" processes mostly interest the production market of extra virgin olive oils. Despite the current processing and extraction technologies, the characteristics of olive oil can still be optimized. In this regard, interesting technology to produce olive oil remains the stone removal of the olives before the extraction of the oil. Recently, the destoners preserved a less low oil yield. In light of recent progress, the review focuses on the influence of destoning on the quality of extra virgin olive oil, using a systematic approach. Interest in this technology is increasing and many researchers report that destoned olive oils show superior characteristics confronting with those obtained by the traditional method. These data indicate that destoning is one of the most significant advantages for the improvement of the oil qualitative traits and the system's sustainability.Unhealthy diets represent a major risk for the pathogenesis of metabolic and chronic inflammatory diseases. Improving the quality of diet is important to prevent chronic diseases, and diet-induced modifications of the gut microbiota (GM) community likely play an important role. The EU-funded Stance4Health project aims at performing a randomized clinical trial based on a nutritional intervention program in the context of normal weight and overweight adults as well as children with obesity and gluten-related disorders or allergy/intolerance to cow's milk. The trial will evaluate the efficacy of a Smart Personalised Nutrition (SPN) service in modifying GM composition and metabolic function and improving consumer empowerment through technology adoption.Diet rich in phenolics would potentially associate with multiple health benefits. Response surface methodology (RSM) was introduced to optimize the process of ultrasound- and microwave-assisted extraction of bound phenolics from the bran of a newly developed black wheat breeding line Jizi439 and then compared with the traditional alkaline method. The optimum conditions were found to be 66 °C, 48 min, and power 240 W for ultrasound-assisted extraction (UAE), and 120 s, power 420 W for microwave-assisted extraction (MAE), respectively. Total bound phenolic contents (TBPCs), determined by Folin-Ciocalteu reagent, were 8466.7 ± 240.9 μg gallic acid equivalents per gram (μg GAE/g) bran for UAE and 8340.7 ± 146.7 μg GAE/g bran for MAE under optimized conditions, which were both significantly higher than that of the traditional method (5688.9 ± 179.6 μg GAE/g) (p < 0.05). Antioxidant activities (AAs) were determined by DPPH and ABTS methods. UAE extracts showed the highest DPPH scavenging activity (77.5 ± 0.9%), while MAE extracts showed the highest ABTS scavenging activity (72.1 ± 0.6%). Both were significantly higher than that of the traditional method (69.6 ± 1.1% for DPPH and 65.9 ± 0.5% for ABTS) (p < 0.05). Total bound phenolics (TBPs) profiles were further analyzed by HPLC, and results indicated that ferulic acid was dominant, followed by vanillic acid and p-coumaric acid. The contents of each identified individual phenolics were significantly increased by ultrasound and microwave. In conclusion, UAE and MAE were comparable with each other in TBP yields and AAs; however, when taking operation time and energy consumption into consideration, MAE was more efficient than UAE. Our study suggested efficiency extraction methods for further use of bound phenolics as a healthy food ingredient.

Autoři článku: Gramfleming4745 (Flowers Albert)