Bartlettsantiago9548
We identified 265,081 patients who survived until discharge following inpatient stroke treatment, 1,902 (0.7%) of whom subsequently developed drug-resistant epilepsy (805 women; mean age 67.0±13.1 years). Fewer than six (≤0.3%) of these patients were assessed for or received epilepsy surgery before the end of follow-up (≤55.5 per 100,000 person-years). Given that few outcomes were identified, we could not proceed with the multivariable analyses.
Patients with stroke-related drug-resistant epilepsy are infrequently considered for epilepsy surgery that could reduce morbidity and mortality.
Patients with stroke-related drug-resistant epilepsy are infrequently considered for epilepsy surgery that could reduce morbidity and mortality.
With the popularity of computed tomography (CT) technique, an increasing number of patients are receiving CT scans. Simultaneously, the public's attention to CT radiation dose is also increasing. How to obtain CT images suitable for clinical diagnosis while reducing the radiation dose has become the focus of researchers.
To demonstrate that limited-angle CT imaging technique can be used to acquire lower dose CT images, we propose a generative adversarial network-based image inpainting model-Low-dose imaging and Limited-angle imaging inpainting Model (LDLAIM), this method can effectively restore low-dose CT images with limited-angle imaging, which verifies that limited-angle CT imaging technique can be used to acquire low-dose CT images.
In this work, we used three datasets, including chest and abdomen dataset, head dataset and phantom dataset. They are used to synthesize low-dose and limited-angle CT images for network training. During training stage, we divide each dataset into training set, validationthe proposed method also achieved the highest score in the subjective quality score.
Experimental results show that the proposed method can effectively restore CT images when both low-dose CT imaging techniques and limited-angle CT imaging techniques are used simultaneously. This work proves that the limited-angle CT imaging technique can be used to reduce the CT radiation dose, and also provides a new idea for the research of low-dose CT imaging.
Experimental results show that the proposed method can effectively restore CT images when both low-dose CT imaging techniques and limited-angle CT imaging techniques are used simultaneously. This work proves that the limited-angle CT imaging technique can be used to reduce the CT radiation dose, and also provides a new idea for the research of low-dose CT imaging.During the last decade, the stimulation of T-cell function by the blockage of immunosuppressive checkpoints has experienced an outstanding impact in the treatment of cancer. Development of the chimeric antigen receptor T-cell technology has also emerged as a powerful alternative for patients suffering from oncological processes, especially those affected by hematological neoplasms. Recent evidence suggest that the use of immunotherapy could be extended to non-oncological diseases and could be especially relevant for age-associated disorders, opening exciting therapeutic options for a wide range of diseases of the elderly. Here we comment on the emergence of T-cell-based immunotherapies as feasible approaches that could revolutionize the future of GeroScience.
Three-dimensional (3D) printing technology has shown potential advantages in accurate and efficient tibial plateau fracture (TPF) treatment. This technology can provide structural morphology to repair fracture fragments. Here, we summarize our experience with the use of 3D printing technology during intraarticular osteotomy in the treatment of the malunion of TPF.
The patients who were treated with malunion of TPF in our hospital between January 2015 and December 2018 were retrospectively analyzed. These patients were divided into two groups the conventional group without 3D-printed model application and the 3D printing group with 3D-printed model application. All patients received the intraarticular osteotomy during operation, and we compared the operation time (min), fracture healing time (months), postoperative knee Rasmussen scores (0-30 points), knee mobility range (0-140°) (the independent t-test), fracture reduction evaluation (Biggi's method) (the chi-square test Fisher's exact test), and postoper and two patients still had slight valgus (<5°) in the conventional group. Only one case in the 3D printing group suffered from an articular surface collapse. buy CB-839 Superficial wound infections occurred in two patients in the conventional group.
The results show that 3D printing technology is an effective preoperative preparation in the treatment of TPF malunion. This technology can facilitate accurate preoperative planning to select the optimal surgical approach, plan the implant placement, visualize the screw trajectory, and anticipate possible intraoperative difficulties.
The results show that 3D printing technology is an effective preoperative preparation in the treatment of TPF malunion. This technology can facilitate accurate preoperative planning to select the optimal surgical approach, plan the implant placement, visualize the screw trajectory, and anticipate possible intraoperative difficulties.Necroptosis is a type of precisely regulated necrotic cell death activated in caspase-deficient conditions. Multiple factors initiate the necroptotic signaling pathway, including toll-like receptor 3/4, tumor necrosis factor (TNF), dsRNA viruses, and T cell receptors. Presently, TNF-induced necroptosis via the phosphorylation of three key proteins, receptor-interacting protein kinase 1, receptor-interacting protein kinase 3, and mixed lineage kinase domain-like protein, is the best-characterized process. Necroptosis induced by Z-DNA-binding protein 1 (ZBP-1) and toll/interleukin-1 receptor (TIR)-domain-containing adapter-inducing interferon (TRIF) plays a significant role in infectious diseases, such as influenza A virus, Zika virus, and herpesvirus infection. An increasing number of studies have demonstrated the close association of necroptosis with multiple diseases, and disrupting necroptosis has been confirmed to be effective for treating (or managing) these diseases. The central nervous system (CNS) exhibits unique physiological structures and immune characteristics. Necroptosis may occur without the sequential activation of signal proteins, and the necroptosis of supporting cells has more important implications in disease development. Additionally, necroptotic signals can be activated in the absence of necroptosis. Here, we summarize the role of necroptosis and its signal proteins in CNS diseases and characterize typical necroptosis regulators to provide a basis for the further development of therapeutic strategies for treating such diseases. In the present review, relevant information has been consolidated from recent studies (from 2010 until the present), excluding the patents in this field.In prostate cancer (PC), drugs targeting CYP17A1 have shown great success in regulating PC progression. However, successful drug molecules show adverse side effects and therapeutic resistance in PC. Therefore, we proposed to discover the potent phytochemical-based inhibitor against CYP17A1 using virtual screening. In this study, a phytochemicals library of ∼13800 molecules was selected to screen the best possible inhibitors against CYP17A1. A molecular modelling approach investigated detailed intermolecular interactions, their structural stability, and binding affinity. Further, in vitro and in vivo studies were performed to confirm the anticancer activity of identified potential inhibitor against CYP17A1. Friedelin from Cassia tora (CT) is identified as the best possible inhibitor from the screened library. MD simulation study reveals stable binding of Friedelin to conserved binding pocket of CYP17A1 with higher binding affinity than studied control, that is, Orteronel. Friedelin was tested on hormone-sensitive (22Rv1) and insensitive (DU145) cell lines and the IC50 value was found to be 72.025 and 81.766 µg/ml, respectively. CT extract showed a 25.28% IC50 value against 22Rv1, ∼92.6% increase in late Apoptosis/Necrosis, and three folds decrease in early apoptosis in treated cells compared to untreated cells. Further, animal studies show a marked decrease in prostate weight by 39.6% and prostate index by 36.5%, along with a reduction in serum PSA level by 71.7% and testosterone level by 92.4% compared to the testosterone group, which was further validated with histopathological studies. Thus, we propose Friedelin and CT extract as potential leads, which could be taken further for drug development in PC. Communicated by Ramaswamy H. Sarma.The global market for battery electric vehicles (BEVs) is continuously increasing which results in higher material demand for the production of Li-ion batteries (LIBs). Therefore, the end of life (EOL) of batteries must be handled properly through reusing or recycling to minimize the supply chain issues in future LIBs. This study analyses the global distribution of EOL lithium nickel manganese cobalt (NMC) oxide batteries from BEVs. The Stanford estimation model is used, assuming that the lifespan of NMC batteries follows a Weibull distribution. The global sales data of NMC batteries from 2009 to 2018 were collected and the sales data from 2019 to 2030 were estimated based on historical trends and BEV development plans in the top 10 countries for BEV sales. The result shows a view of EOL NMC batteries worldwide. In 2038, China, South Korea and the United States (US) will be the three leading countries in the recovery of NMC battery materials. An overall global flow of NMC battery materials (aluminium, copper, manganese, steel, lithium and graphite/carbon) was also predicted in this research. This study estimated the waste potential of NMC battery materials specifically in the top 10 countries and also in other countries. Finally, the economic value estimation results for recovered materials indicated that copper, aluminium and manganese will have cumulative economic values of 7.9, 4.4 and 3.9 billion US dollars in 2038, respectively. As this study considers the different specific energy of NMC batteries in the coming years due to technological advancement, the findings can provide a more realistic insight into the future demand for NMC battery materials. This study reveals that a high number of EOL NMC batteries will be accumulated in 2038 in several countries. Therefore, large-scale recycling infrastructures should be set up to improve the efficiency of the recovery of battery materials.Cyperus articulatus has been extensively studied for its essential oil (EO), active components and antibacterial activities against a wide range of bacteria such as Bacillus megaterium, Streptococcus pyogenes, Staphylococcus epidermidis, Escherichia coli and Staphylococcus aureus. However, knowledge of the biomolecular interaction of the individual EO metabolites responsible for its inhibition activities is lacking. The multi-drug-resistant bacteria S. aureus, which is of prime concern, has been reported to be inhibited by Cyperus articulatus rhizome EO. The present work analyzed the molecular interactions of the major Cyperus articulatus rhizome EO metabolites with the target enzyme TyrRS of S. aureus and studied the conformational dynamics and stability of the protein-ligand complexes. Molecular docking studies of selected EO metabolites such as mustakone, longifolenaldehyde, cyperotundone, α-copaene, β-calacorene, α-calacorene and khusinol were conducted along with standard drug chloramphenicol for comparative analysis of their binding affinity with S.