Brinchbank6686
Aiming at the problem of gas emissions caused by the high-pressure operation of a large industrial gas (O2, N2, and Ar) pipeline network, this study establishes a mathematical model of the oxygen transmission and distribution system (OTDS) based on TGNET software. In addition, the study conducts transient simulation, comprehensively considering theoretical constraints and actual operation requirements, and adopts a large air separation company for the OTDS as a case study. After comparing two traditional adjustment methods, a compressor short stop adjustment strategy is proposed to reduce the peak pressure of the pipe network system. This study determines the energy-saving benefits and the difference in the scope of application of compressor short-stop adjustment. Compared with the medium-pressure release and inlet guide vane opening adjustment (IGVOA) strategies, the compressor short-stop adjustment strategy reduced oxygen emission by 3850.9 Nm3 and increased by 927.1 Nm3. Furthermore, the compressor operating energy consumption was reduced by 3349 and 2919 kW h. Compared with the IGVOA strategy, the compressor short-stop adjustment strategy has increased the application range of compressor inlet pressure and medium-pressure pipeline pressure by more than 70%. This strategy is effective for reducing the emission of pipeline gases caused by fluctuations in user demand.Any improvement in drilling technology is critical for developing the oil and gas industry. The success of drilling operations largely depends on drilling fluid characteristics. Drilling fluids require enough viscosity to suspend the particles and transport them to the surface and enough capability to control the fluid loss into the formation. Rheology and filtration characteristics of drilling fluids are crucial factors to consider while ensuring the effectiveness of a drilling operation. Graphene oxide (GO), xanthan gum (XG), and low-viscosity carboxymethyl cellulose (CMC LV) are being utilized in this research to produce high-performance, low-solid water-based drilling fluids (WDFs). Rheological and filtration behaviors of GO/XG/CMC LV-WDF were investigated as a function of GO, XG, and CMC LV at low concentrations (0.0-0.3% w/w) and atmospheric conditions. According to the findings, GO improved the rheological and filtration capabilities of the WDF. By adding 0.15 wt % GO, shear stress could be doubled, est filter cakes, resulting in excellent filtration. Five rheological models were employed to match the fluid parameters quantitatively. The Herschel-Bulkley model outperformed the other models in simulating fluid rheological behavior. The findings of this study can be utilize to provide low-cost, stable, and environmentally compatible additives for drilling low-pressure, depleted, and fractured oil and gas reservoirs.Exposure to carcinogenic chemicals, Helicobacter pylori infection, and high dietary salt are the risk factors associated with gastric cancer. Mice models of gastric cancer are key to understanding the cancer mechanism, to discerning the role played by different factors, and to determining therapeutic effects of different treatments. The goal has been to find targets which are only expressed with cancer so that they can be targeted specifically without harming normal cells. One such target could be the transferrin receptor, a glycoprotein receptor that is expressed many-folds on rapidly growing cells due to the greater demand of iron. In this study, gastric cancer was developed in mice (BALB/c) with human cancer-associated risk factors by feeding them with tumor-inducing concentration of methyl nitrosourea, dietary salt, and H. pylori along with normal feed and water. Three strategies were adopted to induce gastric cancer; (1) use of N-methyl-N-nitrosourea (MNU) with high dietary salt (NaCl), (2) infection with H. pylori (isolated from human gastric tissue), and (3) use of MNU along with high concentration of NaCl after H. pylori infection. Mice were dissected after induction, and histological study of gastric tissue was done with Hematoxylin and Eosin staining. A diagnostic probe comprising transferrin conjugated with cadmium sulfide quantum dots was prepared and characterized. It was used to study the transferrin receptor overexpression in gastric tissue of cancer-induced mice relative to the normal mice. Mice of group 3 showed the highest rate of the cancer incidence ratio (96%) along with a high expression of transferrin receptors among the three groups. Histochemical studies showed that different types of gastric cancer depend upon the cancer-induction conditions. The mouse model of group 3 has the potential to be used in the future to study the therapeutic effects of cancer medicines, and overexpression of transferrin receptors could be identified through the designed probe to be used as diagnostics.Halloysite clay nanotubes (HNTs) have been proposed as highly biocompatible for several biomedical applications. Various polymers have been used to functionalize HNTs, but scarce information exists about polystyrene for this purpose. Selleck RMC-4630 This work evaluated polystyrene-functionalized HNTs (FHNTs) by comparing its effects with non-FHNTs and innocuous talc powder on in vitro and in vivo models. Monocyte-derived human or murine macrophages and the RAW 264.7 cell line were treated with 0.01, 0.1, 1, and 100 μg mL-1 FHNTs, HNTs, or talc to evaluate the cytotoxic and cytokine response. Our results show that nanoclays did not cause cytotoxic damage to macrophages. Only the 100 μg mL-1 concentration induced slight proinflammatory cytokine production at short exposure, followed by an anti-inflammatory response that increases over time. CD1 mice treated with a single dose of 1, 2.5, or 5 mg Kg-1 of FHNTs or HNTs by oral and inhalation routes caused aluminum accumulation in the kidneys and lungs, without bodily signs of disnt exposure to 1 mg of HNTs or FHNTs for 8 months seem safe for CD1 mice. Our in vivo and in vitro results indicate that nanoclays are highly biocompatible, supporting their possible safe use for future biomedical and general-purpose applications.In this work, we report the synthesis of two nanoscale composites of nickel, NiPIm1.5 and NiPIm2 (NiPIm1.5 = [Ni(C3H4N2)(H2O)5](HPO4)(H2O)·0.3(C3H4N2) and NiPIm2 = [Ni(C3H4N2)(H2O)5](HPO4)(H2O)·0.4(C3H4N2)·H2O), characterization by various instrumental methods and the investigation of the thermo-oxidative degradation of polyethylene (PE), poly(vinyl chloride) (PVC), and polystyrene (PS) in the presence of both nanocomposites. All of these polymers are subjected to thermal treatment with and without composites at 353 K for 120 min. The rate of degradation is maximum with NiPIm2 for all three polymers, PE-13.1522%, PS-13.6152%, and PVC-8.04%, whereas with NiPIm1.5, PE-7.3128%, PS-11.9837%, and PVC-4.9106%. The percentage of degradation in the presence of composites is much greater than the percentage of degradation without composites. The specific heat capacities of NiPIm1.5 and NiPIm2 are -148.42 and -348.64 J kg-1 K-1, respectively. The degradation process takes place by free radical mechanism. Thermogravimetric and differential thermal analyses revealed that the temperatures corresponding to the formation of composite materials with NiPIm2 are 338.76, 331.78, and 354.30 K for PE, PVC, and PS, respectively. The temperatures of formation of the above composites are found to be less than that of NiPIm1.5. The degraded residues of polymers indicate that ester is formed in each case along with other byproducts containing imidazole. Infrared studies revealed the thermal oxidation of hydroperoxides and the formation of ketone.Association reactions by femtosecond laser filamentation in gaseous C2H4 were studied by time-of-flight mass spectrometry of neutral reaction products. Direct sampling from the reaction cell to a mass spectrometer via a differential pumping stage allowed the identification of various hydrocarbon molecules C n H m with n = 3-7 and m = 4-7, which includes species not observed in the previous studies. It was found that products containing three and four carbon atoms dominate the mass spectrum with smaller yields for higher-mass species, suggesting that carbon chain growth proceeds through the reaction with C2H4 in the reaction cell. The product distribution showed a clear dependence on the laser pulse energy for filamentation.In this report, the geometric and electronic properties and static and dynamic hyperpolarizabilities of alkali metal-doped C6O6Li6 organometallics are analyzed via density functional theory methods. The thermal stability of the considered complexes is examined through interaction energy (E int) calculations. Doping of alkali metal derives diffuse excess electrons, which generate the electride characteristics in the respective systems (electrons@complexant, e-@M@C6O6Li6, M = Li, Na, and K). The electronic density shifting is also supported by natural bond orbital charge analysis. These electrides are further investigated for their nonlinear optical (NLO) responses through static and dynamic hyperpolarizability analyses. The potassium-doped C6O6Li6 (K@C6O6Li6) complex has high values of second- (βtot = 2.9 × 105 au) and third-order NLO responses (γtot = 1.6 × 108 au) along with a high refractive index at 1064 nm, indicating that the NLO response of the corresponding complex increases at a higher wavelength. UV-vis absorption analysis is used to confirm the electronic excitations, which occur from the metal toward C6O6Li6. We assume that these newly designed organometallic electrides can be used in optical and optoelectronic fields for achieving better second-harmonic-generation-based NLO materials.Recently, Lanzhou lily has attracted more attention because of its bioactive components specifically polysaccharides. We studied in vitro the effects of Lactobacillus plantarum fermentation on the physicochemical properties, chemical structure, and antioxidant activity of the Lanzhou lily polysaccharide. The results showed that compared with the unfermented Lanzhou lily polysaccharide (LP-W), the molecular weight (M w) of the fermented Lanzhou lily polysaccharide (LPF-W) decreased from 4334 to 1684 kDa, the particle size decreased from 300.8 ± 6.38 to 141.9 ± 4.96 nm, and the solubility increased from 72.33 ± 3.58 to 104.27 ± 2.91 mg/mL. In addition, after fermentation, the monosaccharide composition of LPF-W changed, and the alternation of mannose residues and glucose residues disappeared. The results of the analysis of the antioxidant activity in vitro showed that compared with LP-W, the fermented LPF-W had higher DPPH radical ability, superoxide anion radical scavenging ability, and reducing efficiency, but the hydroxyl radical scavenging ability decreased. These findings provide a reference for the potential application of the lily polysaccharide as a plant-derived antioxidant in functional foods.Lattice structures are employed as lightweight sandwich cores, supports, or infill patterns of additive manufacturing (AM) components. As infill structures, the mechanical properties of AM parts are influenced by the infill pattern. In this work, we present the mechanical characterization of three commonly used infill patterns in AM, triangular, square, and hexagonal, and compare them with analytical and numerical models. Fused filament fabrication of polylactic acid (PLA) thermoplastic is used as the printing material for the compressive and tensile tests. First, a parametric analysis is performed by changing the infill density to obtain numerically and analytically the mechanical properties of the studied samples. Next, we compare the experimental results with numerical and analytical models and propose numerical correlations for high-density honeycombs. The stiffest infill pattern was the square, and the explanation is provided in detail. Also, there is a nonlinear correlation between density and the mechanical properties; however, the strongest part was not possible to determine with a significant statistical value.