Bonnerserup0736

Z Iurium Wiki

Verze z 2. 10. 2024, 20:32, kterou vytvořil Bonnerserup0736 (diskuse | příspěvky) (Založena nová stránka s textem „Typically, materials with large optical losses such as metals are used as microheaters for silicon based thermo-optic phase shifters. Consequently, the hea…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Typically, materials with large optical losses such as metals are used as microheaters for silicon based thermo-optic phase shifters. Consequently, the heater must be placed far from the waveguide, which could come at the expense of the phase shifter performance. Reducing the gap between the waveguide and the heater allows reducing the power consumption or increasing the switching speed. In this work, we propose an ultra-low loss microheater for thermo-optic tuning by using a CMOS-compatible transparent conducting oxide such as indium tin oxide (ITO) with the aim of drastically reducing the gap. Using finite element method simulations, ITO and Ti based heaters are compared for different cladding configurations and TE and TM polarizations. Furthermore, the proposed ITO based microheaters have also been fabricated using the optimum gap and cladding configuration. Experimental results show power consumption to achieve a π phase shift of 10 mW and switching time of a few microseconds for a 50 µm long ITO heater. The obtained results demonstrate the potential of using ITO as an ultra-low loss microheater for high performance silicon thermo-optic tuning and open an alternative way for enabling the large-scale integration of phase shifters required in emerging integrated photonic applications.The strong coupling between photonic nanocavities at arbitrary positions is important for the realization of photonic integrated circuits. However, the coupling between nanocavities is mainly through the evanescent field, which limits the distance between nanocavities and hinders the scalability of photonic circuits. Here, we propose a scheme to realize the strong coupling between two distant nanocavities beyond the limitations of evanescent field coupling. Two distant identical one dimensional photonic crystal cavities (1DPhCCs) more than 8 µm apart are bridged by a microring which supports whispering gallery modes (WGMs). We demonstrate that the two 1DPhCCs can be strongly coupled even though the microring is largely detuned from them. The supermodes between the two 1DPhCCs are formed while the proportions of the WGM in the microring are suppressed at large detuning. The light energy mainly oscillates between the two 1DPhCCs, leaving the WGM in the microring as a dark mode. Such a scheme can realize strong coupling between distant nanocavities without much difficulties in experiments, which provides advantages for the realization of next-generation photonic circuits.This paper presents a theoretical method for separating bending and torsion of shape sensing sensor to improve sensing accuracy during its deformation. We design a kind of shape sensing sensor by encapsulating three fibers on the surface of a flexible rod and forming a triangular FBG sensors array. According to the configuration of FBG sensors array, we derive the relationship between bending curvature and bending strain, and set up a function about the packaging angle of FBG sensor and strain induced by torsion under different twist angles. Combined with the influence of bending and torsion on strain, we establish a nonlinear matrix equation resolving three unknown parameters including maximum strain, bending direction and wavelength shift induced by torsion and temperature. this website The three parameters are sufficient to separate bending and torsion, and acquire two scalar functions including curvature and torsion, which could describe 3D shape of rod according to Frenet-Serret formulas. Experimental results show that the relative average error of measurement about maximum strain, bending direction is respectively 2.65% and 0.86% when shape-sensing sensor is bent into an arc with a radius of 260 mm. The separating method also applied to 2D shape and 3D shape of reconstruction, and the absolute spatial position maximum error is respectively 3.79mm and 11.10mm when shape-sensing sensor with length 500mm is bent into arc shape with a radius 260mm and helical curve. The experiment results verify the feasibility of separating method, which would provide effective parameters for precise 3D reconstruction model of shape sensing sensor.A novel fiber Sagnac-like detection system has unique competitive advantages for detecting atomic spin precession in atomic magnetometers. Unfortunately, its operating stability is severely limited by temperature fluctuations. In this paper, we describe a new approach to improve the temperature stability by using the ratio signal as the output instead of the conventional fundamental component. This method can effectively counteract the temperature-caused fluctuations in both light intensity and scale factor of photodetector. For a temperature range from 20°C to 40°C, a relative fluctuation of the ratio output signal of 0.97% was achieved, which was 17.4 times better than the fundamental component output. Moreover, no additional equipment and complex compensation algorithms are required during this process. It is a generic method that can also be applied to improve the stability of other detection schemes used in atomic magnetometers.Phase shifting interferometric (PSI) techniques are among the most sensitive phase measurement methods. Owing to its high sensitivity, any minute phase change caused due to environmental instability results into, inaccurate phase measurement. Consequently, a well calibrated piezo electric transducer (PZT) and highly-stable environment is mandatory for measuring accurate phase map using PSI implementation. Here, we present an inverse approach, which can retrieve phase maps of the samples with negligible errors under environmental fluctuations. The method is implemented by recording a video of continuous temporally phase shifted interferograms and phase shifts were calculated between all the data frames using Fourier transform algorithm with a high accuracy ≤ 5.5 × 10-4 π rad. To demonstrate the robustness of the proposed method, a manual translation of the stage was employed to introduce continuous temporal phase shift between data frames. The developed algorithm is first verified by performing quantitative phase imaging of optical waveguide and red blood cells using uncalibrated PZT under the influence of vibrations/air turbulence and compared with the well calibrated PZT results. Furthermore, we demonstrated the potential of the proposed approach by acquiring the quantitative phase imaging of an optical waveguide with a rib height of only 2 nm and liver sinusoidal endothelial cells (LSECs). By using 12-bit CMOS camera the height of shallow rib waveguide is measured with a height sensitivity of 4 Å without using PZT and in presence of environmental fluctuations.vn.Images captured under hazy conditions (e.g. fog, air pollution) usually present faded colors and loss of contrast. To improve their visibility, a process called image dehazing can be applied. Some of the most successful image dehazing algorithms are based on image processing methods but do not follow any physical image formation model, which limits their performance. In this paper, we propose a post-processing technique to alleviate this handicap by enforcing the original method to be consistent with a popular physical model for image formation under haze. Our results improve upon those of the original methods qualitatively and according to several metrics, and they have also been validated via psychophysical experiments. These results are particularly striking in terms of avoiding over-saturation and reducing color artifacts, which are the most common shortcomings faced by image dehazing methods.In this study, to fabricate diamond concave microlenses in a simple manner, an approach that combines a spin coating process with subsequent dry etching was demonstrated. First, photolithography was used to produce cylindrical holes in the photoresist layer on the diamond surface. Then, another photoresist was spin coated to fill the holes, and the concave structures with meniscus shapes were then obtained because of centrifugal force and interfacial tension. Finally, diamond concave microlenses were formed by transferring photoresist concave structures onto a diamond substrate using a dry etching technique. The fabricated diamond microlens exhibits a low surface roughness with nanometers as well as high-quality imaging and focusing performances, which is expected to have a wider range of potential applications under harsh and special conditions.The performance of plasmon in applications is strongly related to plasmon damping, i.e., a dephasing of the optical polarization associated with the electron oscillation. Accurate measurement, manipulation, and, ultimately, prolongation of the dephasing time are prerequisites to the future development of the application of plasmonics. Here, we studied the dephasing time of different plasmonic hotspots in an individual bowtie structure by time-resolved photoemission electron microscopy and proposed an easy-to-operate method for actively and flexibly controlling the mode-dependent plasmon dephasing time by varying the polarization direction of a femtosecond laser. Experimentally, we achieved a large adjustment of the dephasing time ranging from 7 to 17 fs. In addition, a structural defect was found to drastically extend the plasmon dephasing time. Assisted with the finite-difference time-domain simulation, the underlying physics of the dephasing time extension by the structural defect was given.Spectroscopic ellipsometer (SE) is an essential optical metrology tool commonly used to characterize thin films and monitor fabrication processes. However, it relies on mechanical rotation of a polarizer or a photo-elastic phase modulator which are limited in speed and prone to errors when handling dynamic processes. The constant trend of micro-electronics dimensions shrinkage and increase of the wafer area necessitates faster and more accurate tools. A fast SE design based on parallel snapshot detection of three signals at different polarizations is proposed and demonstrated. Not relying on mechanical rotation nor serial phase modulation, it is more accurate and can reach acquisition rates of hundreds of measurements per second.We report the infrasonic performance of a fiber optic laser frequency reference with potential application to space-based gravitational wave detectors, such as the Laser Interferometer Space Antenna. We determine the optimum cross-over frequency between an optical frequency comb stabilized to a Rubidium atomic reference and two passive, all-fiber interferometers interrogated using digitally enhanced homodyne interferometery. By measuring the relative stability between the three independent optical frequency references, we find the optimum cross-over frequency to occur at 1.5 mHz, indicating that our passive fiber frequency reference is superior to the optical frequency comb at all higher frequencies. In addition, we find our fiber interferometers achieve a stability of 20 kHz/Hz at 1.5 mHz, improving to a stability of 4 Hz/Hz above 3 Hz. These results represent an independent characterization of digitally enhanced fiber references over long time scales and provide an estimate of thermal effects on these passively isolated systems, informing future reference architectures.

Autoři článku: Bonnerserup0736 (Hurst Bowers)